自动驾驶
文章平均质量分 54
自动驾驶的积累
我的国
GitHub UI: https://hndeveloper.github.io
展开
-
自动驾驶数据融合
在自动驾驶感知系统中,一个目标(例如其他车辆或行人)的信息一般来自多个不同的传感器,如 LiDAR(激光雷达)、相机、毫米波雷达等。这些传感器提供的数据需要通过传感器融合技术进行整合,以得到目标的详细状态,包括位置、大小、朝向、速度以及其在图像或点云中的边界框(Bounding Box,简称BBX)。:首先,将各种传感器的原始数据进行预处理,包括去噪声、坐标转换等,使数据可以进行后续处理。:接着,在每个传感器的数据中进行物体检测。例如,对于 LiDAR,可能使用点云分割算法来检测出单独的物体;原创 2023-06-20 14:16:40 · 2867 阅读 · 0 评论 -
C++写一个简单的状态机实现
在这个示例中,我们添加了一个名为Event的枚举以表示可能的事件。我们还为StateMachine类添加了一个handleEvent方法,该方法接收一个Event参数并根据事件类型调用相应的函数(如start、pause等)。现在,在main函数中,您可以通过调用stateMachine.handleEvent并传递相应的事件来测试状态跳转。在C++中实现一个事件驱动的状态机,您可以在StateMachine类中添加事件枚举和处理事件的方法。原创 2023-06-15 15:03:03 · 1612 阅读 · 2 评论 -
超声波USS 温度补偿和降噪
车载超声波传感器主要用于测量与障碍物之间的距离,以辅助驾驶员进行停车或避免碰撞。然而,温度和噪声会影响超声波传感器的性能。为了获得准确的测量结果,需要对这些因素进行补偿和降噪。原创 2023-06-15 11:27:56 · 1321 阅读 · 0 评论 -
如何训练一个模型
在自动驾驶中,视觉感知模型负责从摄像头捕获的图像中提取关键信息,如车道线、交通标志、其他车辆、行人等。训练视觉感知模型通常基于深度学习技术,尤其是卷积神经网络(CNN)。:首先需要收集大量的驾驶场景图像作为训练和验证数据。这些图像应该覆盖各种实际驾驶条件,如不同光照、天气、路面状态等。:对收集到的图像进行预处理,包括缩放、裁剪、色彩空间转换等操作,以便将其输入到神经网络中。同时,可以应用数据增强技术(如旋转、翻转、变形等)来扩充数据集,提高模型的泛化能力。原创 2023-06-14 23:46:03 · 1778 阅读 · 0 评论 -
自动驾驶系统中的传感器标定
自动驾驶系统中的传感器标定(Sensor Calibration)是确保各个传感器正确运作并提供准确数据的关键步骤。标定过程旨在消除传感器之间的误差,从而实现更精确、可靠的环境感知能力。原创 2023-06-14 23:19:08 · 656 阅读 · 0 评论 -
自动驾驶领域常见的坐标系
以地图为参考系建立的坐标系,用于表示高精度地图中的道路、交通标志、建筑物等地理特征的相对位置。:以车辆为参考系建立的坐标系,用于表示车辆内部传感器及周围物体相对于车辆质心的位置和姿态。:以惯性测量单元(IMU)为参考系建立的坐标系,用于表示车辆的加速度、角速度和姿态等惯性信息。:以地球表面为参考系建立的坐标系,用于表示车辆、道路和其他地理特征相对于地球的绝对位置。:以传感器(如摄像头、激光雷达等)为参考系建立的坐标系,用于表示从该传感器获取的目标物体的位置和姿态信息。每个传感器都有其独立的坐标系。原创 2023-06-14 23:14:19 · 1672 阅读 · 0 评论 -
自动驾驶中常用传感器作用
自动驾驶系统中,各类传感器扮演着重要的角色,它们各自负责收集不同类型的环境信息。原创 2023-06-14 22:56:02 · 1926 阅读 · 0 评论 -
ROS 远程debug
按下图步骤 添加可视化的topic,如radar点云。3 ----- 自车静止,旁边有车经过目标移动速度。2 ----- Selection 选择的目标点。4 ----- 绿色的点是附近的路沿,其速度为0。这里我们添加了 5 路radar点云数据。还可以rosbag 回放,也是一样的。1 ---- 自车位置。原创 2023-03-14 10:19:57 · 91 阅读 · 0 评论