1. torch.nn.functional官方解释
进入pytorch官方Docs
查看 torch.nn官方指南,讲的很详细
2 代码
1、
import torch
from torch import nn
input = torch.tensor([[1, 2, 0, 3, 1],
[0, 1, 2, 3, 1],
[1, 2, 1, 0, 0],
[5, 2, 3, 1, 1],
[2, 1, 0, 1, 1]])#输入图像是二维的,两个[[]]
kernel = torch.tensor([[1, 2, 1],
[0, 1, 0],
[2, 1, 0]])
print(input.shape)
print(kernel.shape)
输出结果
输出input与kernel尺寸发现与要求的参数不一致(参数下方已截出)
输入与卷积核如下
torch.nn.function部分参数要求:
- 整体代码
import torch
import torch.nn.functional as F
input = torch.tensor([[1, 2, 0, 3, 1],
[0, 1, 2, 3, 1],
[1, 2, 1, 0, 0],
[5, 2, 3, 1, 1],
[2, 1, 0, 1, 1]])#输入图像是二维的,两个[[]]
kernel = torch.tensor([[1, 2, 1],
[0, 1, 0],
[2, 1, 0]])
#参数尺寸与要求不一致
#更改尺寸
input = torch.reshape(input, (1, 1, 5, 5))#minibatch=1,in_channels=1
kernel = torch.reshape(kernel, (1, 1, 3, 3))#minibatch=1,in_channels=1
output = F.conv2d(input, kernel, stride=1)#步长=1,padding=0
print(output)
output_1 = F.conv2d(input, kernel, stride=2)#步长=2,padding=0
print(output_1)
output_2 = F.conv2d(input, kernel, stride=1, padding=1)#步长=1,padding=1
print(output_2)
输出结果