【numpy数据处理】(5)随机数据构造和读写数据操作

本文介绍了numpy的随机模块,包括如何构造浮点数、整数及随机高斯分布,以及设置随机种子确保重复性。同时,讲解了numpy如何读取和写入数据,如使用np.loadtxt进行文件读取,并详细说明了其参数用法。
摘要由CSDN通过智能技术生成

numpy的随机模块

1、随机构建浮点数np.random.rand()
1、随机构建整数np.random.randint()
3、随机高斯分布
4、随机种子,保证随机数不变

使用numpy读写数据

1、读取文件内容
np.loadtxt 说明
‘ren.txt’:路径最好和代码放在一起
skiprows:去掉几行
delimiter:以什么分隔符划分
usecols=(1,4,5):指定使用哪几列
2、写入数据

import numpy as np

'''
numpy的随机模块
1、随机构建浮点数np.random.rand()
1、随机构建整数np.random.randint()
3、随机高斯分布
4、随机种子,保证随机数不变
'''
print(np.random.rand(3,2))#所有值都是从0-1的
# >> [[0.79167602 0.80625962]
#  [0.03181182 0.77446577]
#  [0.94747585 0.9494842 ]]

print(np.random.randint(10, size=(2, 4)))#所有值都是整数,且范围在0至10
# >> [[4 2 8 2]
#  [2 4 4 0]]

#随机高斯分布
np.set_printoptions(precision=3) #精确到小数点后三位
mu, sigma =0, 0.1
print(np.random.normal(mu,sigma,10))
# >> [-0.098 -0.007  0.024 -0.024  0.024  0.019  0.015  0.064 -0.214 -0.006]

#随机种子
np.random.seed(0)

'''
使用numpy读写数据
1、读取文件内容
np.loadtxt 说明
  'ren.txt':路径最好和代码放在一起
   skiprows:去掉几行
   delimiter:以什么分隔符划分
   usecols=(1,4,5):指定使用哪几列
2、写入数据
'''
#读取文件全部内容
data = np.loadtxt('ren.txt')
print(data)
# >> [[1. 2. 3. 4. 5. 6.]
#  [7. 8. 9. 6. 3. 2.]]

#读取时掠过第一行
data1=np.loadtxt('ren.txt',skiprows=1)
print(data1)
# >>  [7. 8. 9. 6. 3. 2.]


# 写入数据
array_0 =np.array([[1,2,4],[3,1,4]])
np.savetxt('ren.txt',array_0 ,fmt='%d')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值