numpy的随机模块
1、随机构建浮点数np.random.rand()
1、随机构建整数np.random.randint()
3、随机高斯分布
4、随机种子,保证随机数不变
使用numpy读写数据
1、读取文件内容
np.loadtxt 说明
‘ren.txt’:路径最好和代码放在一起
skiprows:去掉几行
delimiter:以什么分隔符划分
usecols=(1,4,5):指定使用哪几列
2、写入数据
import numpy as np
'''
numpy的随机模块
1、随机构建浮点数np.random.rand()
1、随机构建整数np.random.randint()
3、随机高斯分布
4、随机种子,保证随机数不变
'''
print(np.random.rand(3,2))#所有值都是从0-1的
# >> [[0.79167602 0.80625962]
# [0.03181182 0.77446577]
# [0.94747585 0.9494842 ]]
print(np.random.randint(10, size=(2, 4)))#所有值都是整数,且范围在0至10
# >> [[4 2 8 2]
# [2 4 4 0]]
#随机高斯分布
np.set_printoptions(precision=3) #精确到小数点后三位
mu, sigma =0, 0.1
print(np.random.normal(mu,sigma,10))
# >> [-0.098 -0.007 0.024 -0.024 0.024 0.019 0.015 0.064 -0.214 -0.006]
#随机种子
np.random.seed(0)
'''
使用numpy读写数据
1、读取文件内容
np.loadtxt 说明
'ren.txt':路径最好和代码放在一起
skiprows:去掉几行
delimiter:以什么分隔符划分
usecols=(1,4,5):指定使用哪几列
2、写入数据
'''
#读取文件全部内容
data = np.loadtxt('ren.txt')
print(data)
# >> [[1. 2. 3. 4. 5. 6.]
# [7. 8. 9. 6. 3. 2.]]
#读取时掠过第一行
data1=np.loadtxt('ren.txt',skiprows=1)
print(data1)
# >> [7. 8. 9. 6. 3. 2.]
# 写入数据
array_0 =np.array([[1,2,4],[3,1,4]])
np.savetxt('ren.txt',array_0 ,fmt='%d')