目标检测
文章平均质量分 90
任小喵r
这个作者很懒,什么都没留下…
展开
-
目标检测tricks(基于detectron2)
目标检测tricks(基于detectron2)正确尝试裁剪由于目标相对于整张图片来说过小,所以对数据进行裁剪(除了裁剪尺寸还需要关注重叠尺寸,重叠尺寸稍微大一些,尽量保持每个目标有完整的存在,不至于因裁剪而破坏目标,这里设置裁剪512,重叠256)参考代码:DOTA_devkit改变anchor size和aspect_ratio由于数据目标较小,所以需要更改detectron2里默认的anchor.size和aspect_ratiocfg.MODEL.ANCHOR_GENERATOR.SI原创 2021-10-28 17:24:24 · 1155 阅读 · 0 评论 -
关于数据增强
数据增强线下:事先执行所有转换,实质上会增加的数据集的大小,适用于较小的数据集。线上:在送入机器学习之前,在小批量(mini-batch)上执行这些转换,适用于较大的数据集,一些机器学习框架支持在线增强,可以在GPU上加速。主要有以下几类:几何变换:例如平移、旋转、翻转、缩放等。(有小目标,必须裁剪颜色变换:①噪声:为了让模型更加鲁棒,可以考虑在训练集内加入高斯噪声、椒盐噪声等对模型进行干扰。② 颜色扰动:改变亮度、灰度、饱和度、对比度等,色调归一化类别不平衡(待补充):重采样;实例平衡增强原创 2021-07-25 19:14:52 · 1184 阅读 · 1 评论