注意:所有代码均是根据题目描述进行了本地测试,没有在北邮oj上测试,不保证一定能AC。
点击链接查看历年机试题目汇总。
A二进制数字翻转
题目描述
输入一个数字T,代表T组测试数据,
对于每组测试数据,输入数据0-2的32次方范围,化成二进制,然后逆序这个二进制序列,转换成十进制。
样例输入
2
2
10
样例输出
1
5
解析
#include <iostream>
using namespace std;
int main()
{
int T;
cin>>T;
while(T--)
{
long long input,ans=0,b[32],i=0;
cin>>input;
while(input)
{
b[i++]=input%2;
input/=2;
}
for(int j=0;j<i;j++) ans=ans*2+b[j];
cout<<ans<<endl;
}
return 0;
}
B 数字填充
题目描述
用点阵表示数字,5*3的方格表示0~9,具体见样例及代码,0是然后输入一个数字串,用点阵输出。
样例输入
02
样例输出
111111
101001
101111
101100
111111
解析
0 1 2 3 4 5 6 7 8 9
1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 0 0 0 1 0 0 1 1 0 1 1 0 0 1 0 0 0 0 1 1 0 1 1 0 1
1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1
1 1 1 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1
根据数字特点逐行输出。
#include <iostream>
#include <cstring>
using namespace std;
int main()
{
char a[100];
cin>>a;
for(int i=0; i<5; i++)
{
for(int j=0; j<strlen(a); j++)
{
if(i==0)
{
if(a[j]=='1') cout<<"010";
else if(a[j]=='4') cout<<"101";
else cout<<"111";
}
else if(i==1)
{
if(a[j]=='0'||a[j]=='4'||a[j]=='8'||a[j]=='9') cout<<"101";
else if(a[j]=='1') cout<<"010";
else if(a[j]=='2'||a[j]=='3'||a[j]=='7') cout<<"001";
else cout<<"100";
}
else if(i==2)
{
if(a[j]=='0') cout<<"101";
else if(a[j]=='1') cout<<"010";
else if(a[j]=='7') cout<<"001";
else cout<<"111";
}
else if(i==3)
{
if(a[j]=='0'||a[j]=='6'||a[j]=='8') cout<<"101";
else if(a[j]=='1') cout<<"010";
else if(a[j]=='2') cout<<"100";
else cout<<"001";
}
else if(i==4)
{
if(a[j]=='1') cout<<"010";
else if(a[j]=='4'||a[j]=='7') cout<<"001";
else cout<<"111";
}
}
cout<<endl;
}
return 0;
}
C 发财数
题目描述
一个大于等于2的整数,如果可以分解为8个或8个以上的素数
相乘,则称其为发财数,让你输出第n个发财数(n最大到1w)
样例输入
1
1
样例输出
256
解析
质因数分解。
范围的确定:
第一个发财数肯定是 2^8=256 ,列出质数表中前10项 2,3,5,7,11,13,17,19,23,29。
从前n个数中选k个数进行组合(可以重复),有C(n+k-1,k)种组合数。
而C(10+8-1,8)=24310,在前10个质数中任意选8个数(可重复选)有24310种组合,
所以前1w个发财数一定是前10个质数的组合,于是质数表取前10项即可。
经过测试,第1w个发财数是338904,所以遍历到40w即可。
关于质因数分解问题,这里引用算法笔记上的相关内容:
对于一个正整数n来说,如果它存在1和本身之外的因子,那么一定是在sqrt(n)的左右成对出现。
而这里把这个结论用在“质因子”上面,会得到一个强化结论:对于一个正整数n来说,如果它存在[2,n]范围内的质因子,
那么这些质因子全部小于等于sqrt(n),要么只存在一个大于sqrt(n)的质因子,而其余质因子全部小于等于sqrt(n)。引自《算法笔记》P166
#include <iostream>
using namespace std;
bool facai(int t) //判断是否是发财数
{
int count=0;
int prime[10]={2,3,5,7,11,13,17,19,23,29};
for(int i=0;i<10;i++)
{
while(t%prime[i]==0)
{
count++;
t/=prime[i];
}
}
if(t>1) count++; //全部比较完后还大于1,说明存在一个大于sqrt(t)的质因子
if(count>=8) return true;
else return false;
}
int main()
{
int T;
cin>>T;
while(T--)
{
int n,count=0;
cin>>n;
for(int i=2;i<400000;i++)
{
if(facai(i)) count++;
if(count==n)
{
cout<<i<<endl;
break;
}
}
}
return 0;
}
D 最长平衡子串
题目描述
给定只含0、1的字符串,找出最长平衡子串的长度(平衡串:包含0和1的个数相同)
输入:
输入串长n(1=<n<=100000)
输入字符串
输出:
输出最长平衡子串长度
输出最长平衡子串
样例输入
8
11011011
样例输出
4
0110
解析:
参考https://blog.csdn.net/henu_xujiu/article/details/81433350
#include <iostream>
#include <cstring>
#include <string>
#include <algorithm>
#include <map>
using namespace std;
int main()
{
int n,sum=0,maxl=0;
map<int,int> m;
string s,ans="";
cin>>n;
cin>>s;
for(int i=0;i<n;i++)
{
if(s[i]=='0') sum--;
else sum++;
if(m[sum])
{
if(maxl<i+1-m[sum])
{
ans=s.substr(m[sum],i+1-m[sum]);
maxl=i+1-m[sum];
}
}
else m[sum]=i+1;
if(sum==0)
{
if(maxl<i+1)
{
ans=s.substr(0,i+1);
maxl=i+1;
}
}
}
cout<<maxl<<endl;
cout<<ans<<endl;
return 0;
}