赌徒破产问题

上算法课老师讲了赌徒破产问题,回来在网上找了相关资料,感觉是个有趣的概率题,于是也写了篇作为总结。

问题介绍

一个赌徒开始有h枚金币,每次赢得一枚金币的概率为a,输掉一枚金币的概率为1-a,直到其所有的金币总数达到N或0则游戏结束,求赌徒最终赢得N枚金币的概率P(N|h)。

求解

对于当前拥有金币数h,下一时刻有两种可能,即h+1和h-1。于是有

P(N|h)=a\times P(N|h+1) +(1-a)\times P(N|h-1)

(这个概率问题服从二项分布,准确点说是0-1分布。这个公式要注意的是概率a对应h+1,1-a对应h-1)

联系高中数学的二次递推数列,得特征方程为

p=ap^2+1-a

整理得

ap^2-p+1-a=0

解得

p_1=1,p_2=\frac{1-a}{a}

所以通项公式为

P(N|h)=A\times 1^h+B\times (\frac{1-a}{a})^h

由题意可知

P(N|N)=1,P(N|0)=0

带入方程解得

P(N|h)= \left\{\begin{matrix} \frac{(\frac{1-a}{a})^h-1}{(\frac{1-a}{a})^N-1} &, a\neq \frac{1}{2}\\ \frac{h}{N}&,a=\frac{1}{2} \end{matrix}\right.

可能从以上公式看不出明显的结果,我们将问题具体化:

一个赌徒开始有10枚金币,每次赢得一枚金币的概率为0.4,输掉一枚金币的概率为0.6,直到其所有的金币总数达到100或0则游戏结束,求赌徒最终赢得100枚金币的概率P(100|10)。

带入后计算得

P(100|10)=1.39\times 10^{-16}

可以看出,赌徒赢得100枚金币的概率接近于0.

结论

从公式中我们可以看出,当赢得金币的概率小于等于1/2时,当N\sim +\infty时,P\sim 0。特别的,对于a=0.5时,于是便有了赌徒输光定理(在“公平”的赌博中,任一个拥有有限赌本的赌徒,只要长期赌下去,必然有一天会输光)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值