【bzoj 1812】[Ioi2005]riv(树形dp)

66 篇文章 0 订阅
33 篇文章 0 订阅

1812: [Ioi2005]riv

Time Limit: 10 Sec   Memory Limit: 64 MB
Submit: 433   Solved: 246
[ Submit][ Status][ Discuss]

Description

几乎整个Byteland王国都被森林和河流所覆盖。小点的河汇聚到一起,形成了稍大点的河。就这样,所有的河水都汇聚并流进了一条大河,最后这条大河流进了大海。这条大河的入海口处有一个村庄——名叫Bytetown 在Byteland国,有n个伐木的村庄,这些村庄都座落在河边。目前在Bytetown,有一个巨大的伐木场,它处理着全国砍下的所有木料。木料被砍下后,顺着河流而被运到Bytetown的伐木场。Byteland的国王决定,为了减少运输木料的费用,再额外地建造k个伐木场。这k个伐木场将被建在其他村庄里。这些伐木场建造后,木料就不用都被送到Bytetown了,它们可以在 运输过程中第一个碰到的新伐木场被处理。显然,如果伐木场座落的那个村子就不用再付运送木料的费用了。它们可以直接被本村的伐木场处理。 注意:所有的河流都不会分叉,也就是说,每一个村子,顺流而下都只有一条路——到bytetown。 国王的大臣计算出了每个村子每年要产多少木料,你的任务是决定在哪些村子建设伐木场能获得最小的运费。其中运费的计算方法为:每一块木料每千米1分钱。 编一个程序: 1.从文件读入村子的个数,另外要建设的伐木场的数目,每年每个村子产的木料的块数以及河流的描述。 2.计算最小的运费并输出。

Input

第一行 包括两个数 n(2<=n<=100),k(1<=k<=50,且 k<=n)。n为村庄数,k为要建的伐木场的数目。除了bytetown外,每个村子依次被命名为1,2,3……n,bytetown被命名为0。 接下来n行,每行包涵3个整数 wi——每年i村子产的木料的块数 (0<=wi<=10000) vi——离i村子下游最近的村子(或bytetown)(0<=vi<=n) di——vi到i的距离(km)。(1<=di<=10000) 保证每年所有的木料流到bytetown的运费不超过2000,000,000分 50%的数据中n不超过20。

Output

输出最小花费,精确到分。

Sample Input

4 2
1 0 1
1 1 10
10 2 5
1 2 3

Sample Output

4

HINT

Source

[ Submit][ Status][ Discuss]

【题解】【树形dp】

【由题意可知,此题是一棵普通树,所以,为了便于存储和处理,需要先用左儿子右兄弟的方式将普通树转化为二叉树】

【用f[i][j][k]表示到第i个村庄,建了j个伐木场,最近的一个伐木场在k处】

【先dfs找出各个点的深度,然后再递归dp。分为当前点建伐木场和不建伐木场两种情况。建伐木场时:f[i][j][k]=min(f[i][j][k],dp(l[i],h,i)+dp(r[i],j-h-1,k),因为是左儿子右兄弟,所以,在当前点建伐木场只对当前点的儿子有影响,对兄弟无影响,所以兄弟的当前最优值依然是到k的;不建伐木场时:f[i][j][k]=min(f[i][j][k],dp(l[i],h,k)+dp(r[i],j-h,k)+(dis[i]-dis[k])*num[i])】

#include<cstdio>
#include<cstring>
#include<algorithm>
#define inf 1000000000
using namespace std;
int tree[110],l[110],r[110];
int a[110],nxt[110],p[110],val[110],tot;
int n,m,num[110];
int f[110][60][110],dis[110];
inline void add(int x,int y,int v)
{
	tot++; a[tot]=y; nxt[tot]=p[x]; p[x]=tot; val[tot]=v;
}
void dfs(int x,int fa)
{
	for(int i=p[x];i!=-1;i=nxt[i])
	 if(a[i]!=fa)
	  {
	  	dis[a[i]]=dis[x]+val[i];
	  	dfs(a[i],x);
	  }
}
int dp(int i,int j,int k)
{
	if(f[i][j][k]!=-1) return f[i][j][k];
	f[i][j][k]=inf;
	for(int h=0;h<=j;++h)
	 {
	 	int ans=0;
	 	if(l[i]) ans+=dp(l[i],h,k);
	 	if(r[i]) ans+=dp(r[i],j-h,k);
	 	f[i][j][k]=min(f[i][j][k],ans+(dis[i]-dis[k])*num[i]);
	 	if(h<j)
	 	 {
	 	 	ans=0;
	 	 	if(l[i]) ans+=dp(l[i],h,i);
	 	 	if(r[i]) ans+=dp(r[i],j-h-1,k);
	 	 	f[i][j][k]=min(f[i][j][k],ans);
		  }
	 }
	return f[i][j][k];
}
int main()
{
    freopen("riv.in","r",stdin);
    freopen("riv.out","w",stdout);
	int i,j;
	memset(p,-1,sizeof(p));
	memset(nxt,-1,sizeof(nxt));
	memset(tree,-1,sizeof(tree));
	scanf("%d%d",&n,&m);
	for(i=1;i<=n;++i)
	 {
	 	int y,z;
	 	scanf("%d%d%d",&num[i],&y,&z);
	 	if(tree[y]==-1) l[y]=i,tree[y]=i;
	 	 else r[tree[y]]=i,tree[y]=i;
	 	add(y,i,z);
	 }
	dfs(0,0);
	memset(f,-1,sizeof(f));
	printf("%d\n",dp(0,m,0));
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值