LeetCode53. Maximum Subarray-python(easy) DP思想

题目来源:

   https://leetcode.com/problems/maximum-subarray/discuss/20193/DP-solution-and-some-thoughts

题目分析:

   本题的意思很简单,即给出一个数列,输出这个数列的最大字段和。比如:[−2,1,−3,4,−1,2,1,−5,4],最大子段和是[4,-1,2,1]答案是6。

   显然,这是一个优化问题,通常可以用DP来解决。DP意思是动态规划。动态规划程序设计是对解最优化问题的一种途径、一种方法,而不是一种特殊算法。不像前面所述的那些搜索或数值计算那样,具有一个标准的数学表达式和明确清晰的解题方法。动态规划程序设计往往是针对一种最优化问题,由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的设计方法对不同的问题,有各具特色的解题方法,而不存在一种万能的动态规划算法,可以解决各类最优化问题。因此除了要对基本概念和方法正确理解外,必须具体问题具体分析,以丰富的想象力去建立模型,用创造性的技巧去求解。

   动态规划算法的基本思想是:将待求解的问题分解成若干个相互联系的子问题,先求解子问题,然后从这些子问题的解得到原问题的解;对于重复出现的子问题,只在第一次遇到的时候对它进行求解,并把答案保存起来,让以后再次遇到时直接引用答案,不必重新求解。动态规划算法将问题的解决方案视为一系列决策的结果,与贪婪算法不同的是,在贪婪算法中,每采用一次贪婪准则,便做出一个不可撤回的决策;而在动态规划算法中,还要考察每个最优决策序列中是否包含一个最优决策子序列,即问题是否具有最优子结构性质。

   当涉及到DP时,我们首先要弄清楚的是子问题的格式(或每个子问题的状态),当我们试图提出递归关系时,子问题的格式可能会有所帮助。本题,我们可以这样想:为了计算sum(0,i),你有2个选择,一是对a[i]加上原先计算的sum(0,i-1),或者不加,这取决于前面的sum是正值还是负值。如果为正,则加上,否则不加。

解决代码:

class Solution:
    def maxSubArray(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        
        sum=0;ma=nums[0]
        for i in range(len(nums)):
            if(sum<0):
                sum=nums[i]
            else:
                sum+=nums[i]
            ma=max(ma,sum)
        return ma

 

你好!对于LeetCode上的问题994.腐烂的橘子,你可以使用Python来解决。下面是一个示例代码: ```python from collections import deque def orangesRotting(grid): # 记录网格的行数和列数 row, col = len(grid), len(grid[0]) # 定义四个方向:上、下、左、右 directions = [(-1, 0), (1, 0), (0, -1), (0, 1)] # 使用队列来保存腐烂的橘子的位置 queue = deque() # 记录新鲜橘子的数量 fresh_count = 0 # 遍历整个网格,初始化队列和新鲜橘子的数量 for i in range(row): for j in range(col): if grid[i][j] == 2: # 腐烂的橘子 queue.append((i, j)) elif grid[i][j] == 1: # 新鲜橘子 fresh_count += 1 # 如果新鲜橘子的数量为0,直接返回0 if fresh_count == 0: return 0 # 初始化分钟数 minutes = 0 # 开始进行BFS,直到队列为空 while queue: # 记录当前分钟数下,队列中的元素数量 size = len(queue) # 遍历当前分钟数下的所有腐烂的橘子 for _ in range(size): x, y = queue.popleft() # 遍历四个方向 for dx, dy in directions: nx, ny = x + dx, y + dy # 判断新位置是否在网格内,并且是新鲜橘子 if 0 <= nx < row and 0 <= ny < col and grid[nx][ny] == 1: # 将新鲜橘子变为腐烂状态 grid[nx][ny] = 2 # 将新鲜橘子的位置加入队列 queue.append((nx, ny)) # 新鲜橘子的数量减1 fresh_count -= 1 # 如果当前分钟数下,没有新鲜橘子了,结束循环 if fresh_count == 0: break # 每遍历完一层,分钟数加1 minutes += 1 # 如果最后还有新鲜橘子,返回-1,否则返回分钟数 return -1 if fresh_count > 0 else minutes ``` 你可以将给定的网格作为参数传递给`orangesRotting`函数来测试它。请注意,该代码使用了BFS算法来遍历橘子,并计算腐烂的分钟数。希望能对你有所帮助!如果有任何疑问,请随时问我。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值