图算法
ifeng0310
这个作者很懒,什么都没留下…
展开
-
《图算法》第二章 图论和概念
对图算法有兴趣的朋友可以关注微信公众号 :《Medical与AI的故事》原文链接:《图算法》第二章 图论和概念在本章中,我们阐述了图算法的框架和术语。介绍图论的基本原理时,重点介绍与实践最相关的概念。首先,我们将描述如何表示图,然后解释不同类型的图及其属性。这在以后的章节中很重要,因为我们的图的特性将指引我们的算法选择和解释结果。在本章的最后,我们将对本书后面章节的图算法...转载 2019-08-24 22:28:20 · 2358 阅读 · 0 评论 -
《图算法》第六章 社区检测算法-3
对图算法有兴趣的朋友可以关注微信公众号 :《 Medical与AI的故事》原文链接:《图算法》第六章-3 社区检测算法 Louvain模块化算法Louvain模块化算法在将节点分配给不同的组时,通过比较社区密度来查找集群。您可以将其视为一种“假设”分析,尝试各种分组,以达到全球最佳。Louvain算法于2008年提出,是最快的模块化算法之一。除了检测社区之外,它还揭示了不同规模的社区层次。...转载 2019-08-30 14:56:37 · 2488 阅读 · 0 评论 -
《图算法》第七章 图算法实践-1
随着我们越来越熟悉特定数据集上不同算法的行为,我们对图分析采用的方法也在不断发展。在本章中,我们将通过几个示例来帮助你更好地了解如何使用Yelp和美国运输部的数据集来处理大规模图数据分析。我们将在Neo4j中进行Yelp数据分析,其中包括数据的一般概述,组合算法以制定旅行建议,以及挖掘用户和业务数据以进行咨询。在Spark中,我们将查看美国航空公司数据,以了解不同航空公司的交通模式和延误以及机场如...转载 2019-08-31 21:49:56 · 1359 阅读 · 0 评论 -
《图算法》第七章 图算法实践-2
对图算法有兴趣的朋友可以关注微信公众号 :《 Medical与AI的故事》原文链接:《图算法》第七章-2 图算法实践 旅游商务咨询作为我们咨询服务的一部分,当有影响力的客人写下他们的住宿情况时,酒店会收到通知,以便他们采取任何必要的行动。首先,我们来看看Bellagio的收视率,由最有影响力的评论家排序:query = """\MATCH (b:Business {name: $hote...转载 2019-08-31 21:59:41 · 1268 阅读 · 1 评论 -
《图算法》第七章 图算法实践-3
对图算法有兴趣的朋友可以关注微信公众号 :《 Medical与AI的故事》原文链接:《图算法》第七章-3 图算法实践 用Apache Spark分析航班数据在本节中,我们将使用不同的场景来说明使用Spark对美国机场数据的分析。假设你是一个数据科学家,有一个相当大的旅行时间表,想深入了解航空公司航班和航班延误的信息。我们将首先研究机场和航班信息,然后深入研究两个特定机场的延误情况。社区检测将...转载 2019-08-31 22:11:18 · 1051 阅读 · 0 评论 -
《图算法》第八章 用图算法增强机器学习-1
对图算法有兴趣的朋友可以关注微信公众号 :《 Medical与AI的故事》原文链接:《图算法》第八章-1 用图算法增强机器学习 我们已经陆续介绍了几种算法,例如LPA;但是,直到现在,我们还是强调图算法用于一般性图分析。由于图在机器学习(ML)中的应用越来越多,我们现在将研究如何使用图算法来增强ML的工作流程。在本章中,我们重点介绍用图算法改进机器学习的最实用办法:提取连接相关的特征,并用于...转载 2019-09-02 15:50:05 · 1843 阅读 · 0 评论 -
《图算法》第八章 用图算法增强机器学习-2
对图算法有兴趣的朋友可以关注微信公众号 :《 Medical与AI的故事》原文链接:《图算法》第八章-2 用图算法增强机器学习 均衡和拆分数据两个节点之间的CO_AUTHOR_EARLY和CO_AUTHOR_LATE关系将作为我们的积极(positive)例子,但我们也需要创建一些消极(negative)的例子。大多数现实世界中的网络都是稀疏的,只有局部密集,这个图也是这样。两个节点没有关系...转载 2019-09-02 16:00:17 · 457 阅读 · 0 评论 -
《图算法》第八章 用图算法增强机器学习-3
对图算法有兴趣的朋友可以关注微信公众号 :《 Medical与AI的故事》原文链接:《图算法》第八章-3 用图算法增强机器学习 如何评估结果现在让我们根据测试集评估我们的模型。尽管有几种方法可以评估模型的性能,但大多数方法都是根据一些基线预测指标得出的,如表8-1所示:表8-1.预测指标其中,对于TP,FN,FP,TN的解释如下:对于二元分类,根据实际值和预测值的关系,共有四种分类...转载 2019-09-02 16:11:10 · 434 阅读 · 0 评论 -
《图算法》第八章 用图算法增强机器学习-4
对图算法有兴趣的朋友可以关注微信公众号 :《 Medical与AI的故事》原文链接:《图算法》第八章-2 用图算法增强机器学习 预测链接:三角形和聚类系数推荐方案通常是基于某种形式的三角形度量进行预测,因此让我们看看它们是否对我们的示例有进一步的帮助。我们可以通过执行以下查询来计算节点所属的三角形数及其聚类系数:CALL algo.triangleCount('Author', 'CO_A...转载 2019-09-02 16:20:56 · 861 阅读 · 0 评论 -
《图算法》第六章 社区检测算法-2
对图算法有兴趣的朋友可以关注微信公众号 :《 Medical与AI的故事》原文链接:《《图算法》第六章-2 社区检测算法强连接组件强连接组件(Strongly Connected Components,SCC)算法是最早的图算法之一。SCC在有向图中查找连接的节点集,其中每个节点都可以从同一集中的任何其他节点的两个方向上访问。它的运行时操作伸缩性很好,与节点数量成比例。在图6-5中,你可以看...转载 2019-08-30 10:15:15 · 2003 阅读 · 0 评论 -
《图算法》第六章 社区检测算法-1
对图算法有兴趣的朋友可以关注微信公众号 :《 Medical与AI的故事》原文链接:《《图算法》第六章-1 社区检测算法-形成一个社区在所有类型的网络中都很常见,识别它们对于评估群体行为和突发现象都很重要。通常来说,社区的成员在群体内的关系比在群体外的节点多,这是社区检测的一般原则。识别这些相关集体可以揭示节点群集、独立组和网络结构。此信息有助于推断对等的各组的相似行为和偏好、弹性估算和查找嵌...转载 2019-08-30 09:58:40 · 4003 阅读 · 0 评论 -
《图算法》第三章 图平台与处理
对图算法有兴趣的朋友可以关注微信公众号 :《Medical与AI的故事》原文链接:《图算法》第三章 图平台与处理在本章中,我们将快速介绍图处理的不同方法和最常见的平台。我们将更仔细地研究本书中使用的两个平台,Apache Spark和Neo4j,以及它们何时适合不同的需求。包括平台安装指南,这样为接下来的几章做好准备。图平台和处理注意事项图分析处理具有结构驱动、...转载 2019-08-25 21:24:04 · 888 阅读 · 1 评论 -
图算法(前言)
文章章节 前言 第一章 图的基本介绍 第二章图论和概念 第三章图平台与处理 第四章 路径查找和图搜索算法 第五章中心性算法 第六章社区检测算法 第七章图算法实践 第八章用图算法增强机器学习 O'Reilly free ebook《Graph Algorithm - Practical Exa...转载 2019-08-22 14:08:15 · 395 阅读 · 0 评论 -
《图算法》第四章 路径查找和图搜索算法-2
对图算法有兴趣的朋友可以关注微信公众号 :《 Medical与AI的故事》原文链接:《图算法》第四章-2 路径查找和图搜索算法最短路径变体:A*A*最短路径算法改进Dijkstra的算法,它更快一些,因为它在确定下一个探索路径时可用的额外信息都包含进来,将这些额外信息作为启发式函数的一部分。该算法由Peter Hart、Nils Nilsson和Bertram Raphael发明,并在19...转载 2019-08-27 17:05:58 · 2848 阅读 · 0 评论 -
《图算法》第四章 路径查找和图搜索算法-1
图搜索(Graph Search)算法是用于在图上进行一般性发现或显式地搜索的算法。这些算法在图上找到出路径,但没有期望这些路径是在计算意义上是最优的。我们将涵盖广度优先搜索(Breadth First Search,BFS)和深度优先搜索(Deep First Search,DFS),因为它们是遍历一个图的基础算法,通常也是许多其他进一步分析的先决条件。路径查找算法(Pathfinding)是...转载 2019-08-26 15:07:50 · 7028 阅读 · 0 评论 -
《图算法》第一章 图的基本介绍
对图算法有兴趣的朋友可以关注微信公众号 :《Medical与AI的故事》原文链接:《图算法》第一章 图的基本介绍图是计算机科学的统一主题下的分支之一,这是一种抽象的表示形式,它描述了运输系统、人机交互和电信网络的组织。这么多不同的结构可以用单一的形式来建模,这给图程序员赋予了强大力量。 —The Algorithm Design Manual, by Steven S. Ski...转载 2019-08-23 10:02:40 · 1240 阅读 · 0 评论 -
《图算法》第五章 中心性算法-1
中心性算法(centrality algorithm)用于理解图中特定节点的角色及其对网络的影响。之所以有用,是因为这些算法能够识别最重要的节点,并帮助我们了解群体动态,例如可信度、可访问性、事物传播的速度以及群体之间的桥梁。尽管这些算法中有许多是为社交网路分析而发明的,但它们已经在各种行业和领域中得到了应用。我们将介绍以下算法:度中心性(Degree Centrality)作为连通性的基线...转载 2019-08-28 16:50:55 · 6408 阅读 · 0 评论 -
《图算法》第五章 中心性算法-2
紧密中心性(Closeness Centrality)紧密性中心性是一种检测节点通过子图传播信息有效性的方法。该方法度量是节点与所有其他节点的距离近的程度。高紧密中心性的节点与所有其他节点的距离最短。在所有节点对的最短路径计算的基础上,紧密中心性算法,计算一个节点到所有其他节点的距离之和。然后将得到的和求倒数,以确定该节点的紧密性中心性得分。节点的紧密中心性用以下的公式来计算:在这个公式中...转载 2019-08-28 17:15:52 · 5055 阅读 · 0 评论 -
《图算法》第五章 中心性算法-3
中介中心性变体:RA-Brandes回想一下,在大规模图上计算精确的中介中心性是非常昂贵的。因此,我们可以选择使用运行速度更快但仍然提供有用信息(尽管不精确)的近似算法。Randomized-Approximate Brandes(随机近似 Brandes,简称RA-Brandes)算法是计算中介中心性近似分数的最著名算法。RA-Brandes算法不计算每对节点之间的最短路径,只考虑所有节点的...转载 2019-08-28 17:24:27 · 2869 阅读 · 1 评论 -
《图算法》附录和关于原作者
附录A补充信息和资源在本节中,我们将快速介绍可能对某些读者有所帮助的其他信息。我们将研究其他类型的算法,将数据导入Neo4j的另一种方法,以及另一个procedure库。还有一些资源用于查找数据集、平台帮助和培训。其他算法许多算法可用于图数据。在这本书中,我们重点介绍了那些最能代表经典图形算法的算法,以及那些对应用程序开发人员最有用的算法。有些算法,如着色(coloring)和启发式(he...转载 2019-09-02 16:58:13 · 480 阅读 · 0 评论