- 博客(9)
- 收藏
- 关注
原创 实用工具(一):使用xrdp实现从windows远程桌面连接ubuntu
step1:安装xrdp】sudo apt-get install xrdpstep2:输入用户名密码后一直蓝屏解决方案:wget http://www.c-nergy.be/downloads/install-xrdp-3.0.zipunzip install-xrdp-3.0.zip./Install-xrdp-3.0.shstep3:输入用户名密码后闪退sudo apt-get install xfce4cd /home/usrnametorch .xsessionecho
2020-12-14 15:06:45
432
原创 经典回顾:模型测试集评价指标(模型泛化能力)
目录混淆矩阵正确率(accuracy)准确率(precision)召回率(recall)F1值为什莫要采用调和平均数?相关参数选择灵敏度(sensitivity)特异度(specificity)1 - 特异度ROC曲线AUC(area under curve)参考资料:混淆矩阵-预测为真预测为假标签为真TPFN标签为假FPTN正确率(accuracy)accuracy=TP+TNTP+FP+FN+TNaccuracy= \frac {TP+TN}{TP+FP+
2020-09-23 17:58:14
3812
原创 基本概念整理(持续更新)
这里写目录标题熵相对熵简介公式交叉熵简介公式熵相对熵简介相对熵又叫KL散度,其数值衡量两个分布p(x)p(x)p(x)和q(x)q(x)q(x)之间差异,相对熵具有两个重要的属性:非负性(即KL(p∣q)≥0KL(p|q)≥0KL(p∣q)≥0)和非对称性(即KL(p∣q)≠KL(p∣q)KL(p|q)≠KL(p|q)KL(p∣q)=KL(p∣q))公式DKL(p∣q)=∑i[p(xi)log(p(xi))−p(xi)log(q(xi))]=∑ip(xi)log(p(xi)q(xi))D_{
2020-09-10 17:42:04
409
原创 经典回顾:BA模型
目录简介动机构造方法参考文献简介Barab´asi-Albert (BA)模型是一种生成大型网络图的方法。动机许多大型网络的一个共同性质是顶点的度遵循幂律分布(指数分布),又被称为无标度网络。Barab´asi-Albert (BA)模型就是用来生成这种网络。构造方法为了构造这种网络需要满足两种属性:(1)网络需要不断增加新的节点不断拓展;(2)新增的节点更有可能与原网络中度更大的节点相连。具体过程:初始网络有m0m_0m0个无连接的顶点,每次都会添加一个新节点,新节点会与mmm(m≤m0m
2020-09-04 17:15:15
4285
原创 经典回顾:变分自编码器
重新参数化:https://spaces.ac.cn/archives/6705什么样的概率密度函数qϕ(z∣x)q_\phi(z|x)qϕ(z∣x),我们可以选择可微函数gϕ()g_\phi()gϕ()和辅助变量$ p $进行重参数化呢?1.简单的逆CDF,
2020-08-28 15:07:53
763
原创 经典回顾:Probabilities Difference方法
目录简介介绍变量介绍p(y∣x/xi)p(y|x/x_i)p(y∣x/xi)计算公式:等价证明:proDiffi(y∣x)proDiff_i(y|x)proDiffi(y∣x)计算公式:参考文献简介PD方法是一种对于分类任务解释性的方法,给定一个需要解释的分类模型f,和一个对应的示例x,该方法可以计算x中的每一个维度对于将x分类为y的影响(影响分为正影响和负影响)。介绍变量介绍xxx:一个实例yyy:类别fff:需要解释的模型xix_ixi:x第i维asa_sas:xi第s种可能的
2020-08-18 18:38:33
343
原创 经典回顾:NNLM模型
目录简介动机连续空间编码模型变量解释:目标函数:预测过程:简介NNLM模型是一种语言模型,即给定语料库后,向模型输入前n个单词,模型输出可能性最大的第n+1单词。动机尽管N-gram语言模型已经在多种任务中取得了不错的效果,N-gram是考虑到语料库中存在连续的单词段进行概率的计算,这就不可避免的会遇到一个无法解决的问题:当输入的句子中存在没有在语料库出现的单词段,就会导致最终的概率计算为0;并且由于N的一般取值较小,也会进一步降低上下文对预测的结果影响。为了解决这两个问题(增强语言模型的泛化能力)
2020-08-14 11:56:33
1284
原创 经典回顾:N-gram模型
目录简介动机简介N-gram模型是一种语言模型,即给定语料库后,向模型输入一句话,模型输出该句话符合人说的话的概率。动机一般情况下,计算一句话Γ(n)=(n−1)!∀n∈N\Gamma(n) = (n-1)!\quad \foralln\in\mathbb NΓ(n)=(n−1)!∀n∈NΓ(z)=∫0∞tz−1e−tdt .\Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,.Γ(z)=∫0∞tz−1e−tdt....
2020-08-12 21:59:34
352
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人