经典回顾:模型测试集评价指标(模型泛化能力)

本文介绍了模型测试中的关键评价指标,如混淆矩阵、正确率、准确率、召回率、F1值及其调和平均数的意义。讨论了如何在正负样本不平衡的情况下选择合适的指标,特别提到了ROC曲线和AUC的重要性。这些指标对于评估模型的泛化能力和实际效果至关重要。
摘要由CSDN通过智能技术生成

混淆矩阵

- 预测为真 预测为假
标签为真 TP FN
标签为假 FP TN

正确率(accuracy)

a c c u r a c y = T P + T N T P + F P + F N + T N accuracy= \frac {TP+TN}{TP+FP+FN+TN} accuracy=TP+FP+FN+TNTP+TN
该评价指标容易受到正负样本不平衡影响,若正样本数量很少,也可以得到高正确率的模型,但是并没有实际作用(模型基本没学到正样本的特征)。为了解决这一问题,因此提出了准确率和召回率。

准确率(precision)

p r e c i s i o n = T P T P + F P precision= \frac {TP}{TP+FP} pr

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值