CQOI2015 选数 莫比乌斯反演 杜教筛

【CQOI2015】NKOJ3249 选数

问题描述

    我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)N种方案。小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究。然而他很快发现工作量太大了,于是向你寻求帮助。
    你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个。由于方案数较大,你只需要输出其除以1000000007的余数即可。

输入格式

    输入一行,包含4个空格分开的正整数,依次为N,K,L和H。

输出格式

    输出一个整数,为所求方案数。

样例输入

2 2 2 4

样例输出

3

提示

样例解释:
所有可能的选择方案:(2,2), (2,3), (2,4), (3,2), (3,3), (3,4), (4,2), (4,3), (4,4)。
其中最大公约数等于2的只有3组:(2,2), (2,4), (4,2)。

数据范围:
对于30%的数据,N≤5,H-L≤5。
对于100%的数据,1≤N,K≤10^9,1≤L≤H≤10^9,H-L≤10^5。


但从莫比乌斯反演来看,这是一道水题。主要是学到了新技能,所以来水一篇。
(听说也可以不用莫比乌斯反演搞,由于本人很菜所以在这里不给其他做法)

(以下内容中,R为题目中的H)
首先按照套路,把L-1和R除以K,把问题转化为在[L/K,R/K]中找N个数,满足它们的gcd为1的个数。

按照套路构造下列函数:
f(n) 表示在区间内满足gcd为n的选法个数
F(n) 表示在区间内满足n|gcd的选法个数

由于 F(n)=(RnL1n)N

接下来用莫比乌斯反演搞就可以了。

然而还有个大问题:如果我们只采用线性筛,在时间和空间上都是过不了的!所以我们要解决 μ 的前缀和。

这里就要补充一个知识,杜教筛。详细证明过程自行百度,如果有莫比乌斯反演的基础知识,还是很好理解的。

这里给出杜教筛代码模板:

//线性筛算出前面部分的Sum自行解决
#include<map>
using namesapce std;
map<ll,ll>al;//记录已经算过的答案,不加T成狗。用hash始终觉得不稳

ll MuSum(ll x)
{
    if(x<=MAXN)return Sum[x];
    if(al.count(x))return al[x];
    ll i,j,ans=1;
    for(i=2;i<=x;i=j+1)
    {
        j=x/(x/i);
        ans=(ans-(j-i+1)*MuSum(x/i)%mod)%mod;
    }
    al[x]=ans;
    return ans;
}

有了这些就稳了,注意细节就好

#include<stdio.h>
#include<map>
#define Min(x,y) ((x<y)?(x):(y))
#define ll long long
#define MAXN 1000000
#define mod 1000000007
using namespace std;
ll N,K,L,R,Ans;
map<ll,ll>al;

ll ksm(ll a,ll b)
{
    ll ans=1;a%=mod;
    while(b)
    {
        if(b&1)ans=ans*a%mod;
        b>>=1;a=a*a%mod;
    }
    return ans;
}

bool mark[MAXN+5];
ll P[MAXN+5],mu[MAXN+5],Sum[MAXN+5];
void Euler()
{
    ll i,j,cnt=0;
    mu[1]=1;
    for(i=2;i<=MAXN;i++)
    {
        if(!mark[i])P[++cnt]=i,mu[i]=-1;
        for(j=1;j<=cnt&&P[j]*i<=MAXN;j++)
        {
            mark[i*P[j]]=true;
            if(i%P[j]==0){mu[i*P[j]]=0;break;}
            mu[i*P[j]]=-mu[i];
        }
    }
    for(i=1;i<=MAXN;i++)Sum[i]=Sum[i-1]+mu[i];
}

ll MuSum(ll x)
{
    if(x<=MAXN)return Sum[x];
    if(al.count(x))return al[x];
    ll i,j,ans=1;
    for(i=2;i<=x;i=j+1)
    {
        j=x/(x/i);
        ans=(ans-(j-i+1)*MuSum(x/i)%mod)%mod;
    }
    al[x]=ans;
    return ans;
}

int main()
{
    ll i,j;

    scanf("%lld%lld%lld%lld",&N,&K,&L,&R);
    Euler();

    L=(L-1)/K;R/=K;
    for(i=1;i<=R;i=j+1)
    {
        j=R/(R/i);if(L/i)j=Min(j,L/(L/i)); //L/i可能为0
        Ans=(Ans+(MuSum(j)-MuSum(i-1))*ksm(R/i-L/i,N)%mod)%mod;
    }

    printf("%lld",(Ans+mod)%mod);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值