【河北OI 2012 DAY1】采花 线段树

【河北OI 2012 DAY1】NKOJ2182 采花

问题描述

萧芸斓是Z 国的公主,平时的一大爱好是采花。
今天天气晴朗,阳光明媚,公主清晨便去了皇宫中新建的花园采花。花园足够大,容纳
了n 朵花,花有c 种颜色(用整数1-c 表示),且花是排成一排的,以便于公主采花。
公主每次采花后会统计采到的花的颜色数,颜色数越多她会越高兴!同时,她有一癖好,
她不允许最后自己采到的花中,某一颜色的花只有一朵。为此,公主每采一朵花,要么此前
已采到此颜色的花,要么有相当正确的直觉告诉她,她必能再次采到此颜色的花。
由于时间关系,公主只能走过花园连续的一段进行采花,便让女仆福涵洁安排行程。福
涵洁综合各种因素拟定了m 个行程,然后一一向你询问公主能采到多少朵花(她知道你是编
程高手,定能快速给出答案!),最后会选择令公主最高兴的行程(为了拿到更多奖金!)。

输入格式

第一行四个空格隔开的整数n、c 以及m。
接下来一行n 个空格隔开的整数,每个数在[1, c]间,第i 个数表示第i 朵花的颜色。
接下来m 行每行两个空格隔开的整数l 和r(l ≤ r),表示女仆安排的行程为公主经
过第l 到第r 朵花进行采花。

输出格式

共m 行,每行一个整数,第i 个数表示公主在女仆的第i 个行程中能采到的花的颜色数。

样例输入

5 3 5
1 2 2 3 1
1 5
1 2
2 2
2 3
3 5

样例输出

2
0
0
1
0

样例说明

询问[1, 5]:公主采颜色为1 和2 的花,由于颜色3 的花只有一朵,公主不采;
询问[1, 2]:颜色1 和颜色2 的花均只有一朵,公主不采;
询问[2, 2]:颜色2 的花只有一朵,公主不采;
询问[2, 3]:由于颜色2 的花有两朵,公主采颜色2 的花;
询问[3, 5]:颜色1、2、3 的花各一朵,公主不采。

数据范围

对于20%的数据,n ≤ 10^2,c ≤ 10^2,m ≤ 10^2;
对于50%的数据,n ≤ 10^5,c ≤ 10^2,m ≤ 10^5;
对于100%的数据,1 ≤ n ≤10^5,c ≤ n,m ≤ 10^5。


这道题我的思路和区间MEX的思路几乎是一样的。

还是由于没有修改操作,考虑离线算法。区间的离线算法套路就是对询问区间排序。

还是可以通过暴力在 O(n) 内求出以1为左端点的区间可以采到有多少朵花。现在考虑如何把左端点右移,也就是考虑左端点右移后会造成什么影响。设原来的左端点的花颜色为C,当且仅当右移后的区间中,原来恰好有两朵颜色为C的花,现在只有一朵花的时候,答案才会减去1。换句话说,如果与i号位置颜色相同的下一朵花的位置为 nex[i] ,那么只有区间 [nex[i],nex[nex[i]]1] 会受到影响。区间修改用线段树是优秀的。


代码:

#include<stdio.h>
#include<algorithm>
#define MAXN 100005
#define MAXT 400005
using namespace std;

int N,C,M,col[MAXN],nex[MAXN],las[MAXN],Tmp[MAXN],Cnt[MAXN],Ans[MAXN];
struct node{int l,r,id;}qry[MAXN];
bool operator<(node x,node y){return x.l<y.l;}

int tot,ls[MAXT],rs[MAXT],a[MAXT],b[MAXT],v[MAXT],lazy[MAXT];

int Build(int x,int y)
{
    int p=++tot;
    a[p]=x;b[p]=y;
    if(x==y){v[p]=Tmp[x];return p;}
    int mid=x+y>>1;
    ls[p]=Build(x,mid);
    rs[p]=Build(mid+1,y);
    return p;
}

void Putdown(int p)
{
    lazy[ls[p]]+=lazy[p];
    lazy[rs[p]]+=lazy[p];
    v[ls[p]]+=lazy[p];
    v[rs[p]]+=lazy[p];
    lazy[p]=0;
}

void Modify(int p,int x,int y)
{
    if(lazy[p])Putdown(p);
    if(a[p]>=x&&b[p]<=y)
    {
        lazy[p]=-1;
        v[p]--;
        return;
    }
    int mid=a[p]+b[p]>>1;
    if(x<=mid)Modify(ls[p],x,y);
    if(mid<y)Modify(rs[p],x,y);
}

int GetAns(int p,int k)
{
    if(lazy[p])Putdown(p);
    if(a[p]==b[p]&&a[p]==k)return v[p];
    int mid=a[p]+b[p]>>1;
    if(k<=mid)return GetAns(ls[p],k);
    return GetAns(rs[p],k);
}

int main()
{
    int i,j=1,x,y;

    scanf("%d%d%d",&N,&C,&M);
    for(i=1;i<=N;i++)scanf("%d",&col[i]);
    for(i=1;i<=M;i++)scanf("%d%d",&qry[i].l,&qry[i].r),qry[i].id=i;

    for(i=N;i;i--)
    {
        if(!las[col[i]])nex[i]=N+1;
        else nex[i]=las[col[i]];
        las[col[i]]=i;
    }
    nex[N+1]=N+1;

    for(i=1;i<=N;i++)
    {
        Tmp[i]=Tmp[i-1];
        Cnt[col[i]]++;
        if(Cnt[col[i]]==2)Tmp[i]++;
    }

    Build(1,N);
    sort(qry+1,qry+M+1);

    for(i=1;i<=N;i++)
    {
        if(j>M)break;
        while(qry[j].l==i)
        {
            Ans[qry[j].id]=GetAns(1,qry[j].r);
            j++;
        }
        Modify(1,nex[i],nex[nex[i]]-1);
    }

    for(i=1;i<=M;i++)printf("%d\n",Ans[i]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值