排座位 二分图最大匹配 搜索

搜索专项训练赛 排座位

题目大意

有n位中国人和n位美国人开会,编号都是1~n。会桌是圆形的,有2n个座位。美国人和中国人必须交替就座,也就是相邻两个人的国籍不能相同。但是其中有些人有矛盾,挨在一起落座会不开心。给出这些矛盾关系,求出最少的不开心人数。

数据范围

对于30% 的数据,0≤n≤5
对于 100% 的数据,0≤n≤9 , 0≤m≤n*n


看到数据范围这么小,不是状压DP就是搜索。这道题显然是搜索,因为很容易枚举排列。

但是,如果仅仅是枚举所有美国人和中国人的排列,时间复杂度会达到 O((n!)2) ,只能过30%的数据。

如果只是枚举一个国籍的人的排列,那么只有 O(n!) 种情况,即362880。这是完全能够承受的。枚举排列用内置的next_permutation就好。

假设枚举的是美国人的排列,对于已知的一个排列怎样得到最优解?这是一个比较经典的二分图最大匹配模型,对于每个中国人,把他代表的点与不会使他产生矛盾的位置连边,那么用n减去最大匹配就是最小矛盾数。使用匈牙利算法,总时间复杂度 O(n2n!)


#include<stdio.h>
#include<algorithm>
#include<cstring>
using namespace std;

int N,M,a[20],Ans=1e9,id;
bool mark[20][20];

int link[20],road[20];
bool Map[20][20];

bool Find(int x)
{
    int i;

    for(i=1;i<=N;i++)
    if(Map[x][i]&&road[i]!=id)
    {
        road[i]=id;
        if(link[i]==0||Find(link[i]))
        {
            link[i]=x;
            return true;
        }
    }
    return false;
}

void Solve()
{
    int i,j,tot=0,x,y;

    memset(Map,0,sizeof(Map));
    memset(road,0,sizeof(road));
    memset(link,0,sizeof(link));

    for(i=1;i<=N;i++)
    for(j=1;j<=N;j++)
    {
        x=a[j];
        y=j==N?a[1]:a[j+1];
        if(mark[i][x]||mark[i][y])continue;
        Map[i][j]=true;
    }

    id=0;
    for(i=1;i<=N;i++)
    {
        id++;
        if(Find(i))tot++;
    }

    Ans=min(Ans,N-tot);
}

int main()
{
    int i,tot;

    scanf("%d%d",&N,&M);

    for(i=1;i<=M;i++)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        mark[x][y]=true;
    }

    for(i=1;i<=N;i++)a[i]=i;
    tot=1;for(i=1;i<=N;i++)tot*=i;

    for(i=1;i<=tot;i++)
    {
        Solve();
        if(i!=tot)next_permutation(a+1,a+N+1);
    }

    printf("%d",Ans);
}
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值