参考文献 代码随想录
给你一个整数数组 prices
,其中 prices[i]
表示某支股票第 i
天的价格。
在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。
返回 你能获得的 最大 利润 。
示例 1:
输入:prices = [7,1,5,3,6,4] 输出:7 解释:在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4。 随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3。 最大总利润为 4 + 3 = 7 。
示例 2:
输入:prices = [1,2,3,4,5] 输出:4 解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4。 最大总利润为 4 。
示例 3:
输入:prices = [7,6,4,3,1] 输出:0 解释:在这种情况下, 交易无法获得正利润,所以不参与交易可以获得最大利润,最大利润为 0。
提示:
1 <= prices.length <= 3 * 104
0 <= prices[i] <= 104
class Solution(object):
def maxProfit(self, prices):
"""
:type prices: List[int]
:rtype: int
"""
# 贪心的思路:只收集赚的
sumN = 0
for i in range(1, len(prices)):
if prices[i] - prices[i - 1] > 0:
sumN += prices[i] - prices[i - 1]
return sumN
二、跳跃游戏
给你一个非负整数数组 nums
,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个下标,如果可以,返回 true
;否则,返回 false
。
示例 1:
输入:nums = [2,3,1,1,4] 输出:true 解释:可以先跳 1 步,从下标 0 到达下标 1, 然后再从下标 1 跳 3 步到达最后一个下标。
示例 2:
输入:nums = [3,2,1,0,4] 输出:false 解释:无论怎样,总会到达下标为 3 的位置。但该下标的最大跳跃长度是 0 , 所以永远不可能到达最后一个下标。
提示:
1 <= nums.length <= 104
0 <= nums[i] <= 105
问题分析
如果纠结它要走多少步,不然很难求出来,假设数组为[2,3,1,1,4],第一个元素是2,那么它的覆盖面积就是2,假设走一步到达3,那么此时的3的覆盖范围是不是3,那好它能走到3,说明之前的也能覆盖,此时总的覆盖面积是不是 1 + 3 = 4,因为从2走了过了嘛,假设走到第一个1,那么它是不是走了2,所以此时的覆盖面积为 1 + 2 = 3,发现没有前面走的步数就是元素对应的下标,然后还要判断找到的元素要在覆盖范围内,就是判断当前的覆盖范围有没有比对应的下标大,如果大,那么对应下标为i的元素可以覆盖到,所以只需在判断即可。
class Solution(object):
def canJump(self, nums):
"""
:type nums: List[int]
:rtype: bool
"""
cover = 0
if len(nums) == 1:
return True
for i in range(len(nums)):
if i <= cover: # 这个保证了找到的元素在覆盖范围内找,说明 最大的覆盖范围是cover,而我们需要再小于最大范围内到的元素加上最大的覆盖范围,看有没有超过数组的长度
cover = max(cover, nums[i] + i)
if cover >= len(nums) - 1:
return True
return False
三、跳跃游戏 II
给定一个长度为 n
的 0 索引整数数组 nums
。初始位置为 nums[0]
。
每个元素 nums[i]
表示从索引 i
向前跳转的最大长度。换句话说,如果你在 nums[i]
处,你可以跳转到任意 nums[i + j]
处:
0 <= j <= nums[i]
i + j < n
返回到达 nums[n - 1]
的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]
。
示例 1:
输入: nums = [2,3,1,1,4] 输出: 2 解释: 跳到最后一个位置的最小跳跃数是2
。 从下标为 0 跳到下标为 1 的位置,跳1
步,然后跳3
步到达数组的最后一个位置。
示例 2:
输入: nums = [2,3,0,1,4] 输出: 2
提示:
1 <= nums.length <= 104
0 <= nums[i] <= 1000
- 题目保证可以到达
nums[n-1]
问题分析
需要cur记录当前的的最大覆盖范围的下标,next记录在覆盖范围内找到的最大覆的下标盖范围count记录走的次数。如何找在当前的最大覆盖范围内的下标找到比当前覆盖范文大的或者是等于的呢,其实就是一个for然后next取的是最大的覆盖范围,然后在判断,如果当前遍历到达了当前最大的覆盖范围的下标,count+=1,因为数组长度等于1的情况已经判断了,那么无论如何都要走一步,然后把找到的最大覆盖范围赋值给当前的最大的覆盖范围的下标,然后在判断是否当前的最大覆盖范围已经超过了数组的长度,如果是,则结束循环。
class Solution(object):
def jump(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if len(nums) == 1:
return 0
next = 0 # 记录下一次的最大覆盖范围
cur = 0 # 当前的覆盖范围
count = 0
for i in range(len(nums)):
next = max(next, i + nums[i]) # 这个记录的是在覆盖范围内找到的最大覆盖范围
if i == cur: # 说明已经在合法的覆盖范围内找到了最大的下一步覆盖范围
# if cur != len(nums) - 1: # 并且当前的距离还没有覆盖到最后一个元素,那么就需要走下一步
cur = next
count += 1 # 因为数组的长度大于1,所以无论如何都要走一步
if cur >= len(nums) - 1:
return count
return count
动规
class Solution(object): def jump(self, nums): """ :type nums: List[int] :rtype: int """ result = [10**4+1] * len(nums) # 初始化结果数组,初始值为一个较大的数,result[i]到达下标为i的最少步数 result[0] = 0 # 起始位置的步数为0 for i in range(len(nums)): # 遍历数组 当前的覆盖范围 for j in range(nums[i] + 1): # 在当前位置能够跳跃的范围内遍历 if i + j < len(nums): # 确保下一跳的位置不超过数组范围 result[i + j] = min(result[i + j], result[i] + 1) # 更新到达下一跳位置的最少步数,当前最少的步数由当前被最大覆盖范围到的最少步数和当前 return result[-1] # 返回到达最后一个位置的最少步数
给你一个整数数组 nums
和一个整数 k
,按以下方法修改该数组:
- 选择某个下标
i
并将nums[i]
替换为-nums[i]
。
重复这个过程恰好 k
次。可以多次选择同一个下标 i
。
以这种方式修改数组后,返回数组 可能的最大和 。
示例 1:
输入:nums = [4,2,3], k = 1 输出:5 解释:选择下标 1 ,nums 变为 [4,-2,3] 。
示例 2:
输入:nums = [3,-1,0,2], k = 3 输出:6 解释:选择下标 (1, 2, 2) ,nums 变为 [3,1,0,2] 。
示例 3:
输入:nums = [2,-3,-1,5,-4], k = 2 输出:13 解释:选择下标 (1, 4) ,nums 变为 [2,3,-1,5,4] 。
提示:
1 <= nums.length <= 104
-100 <= nums[i] <= 100
1 <= k <= 104
class Solution(object):
def largestSumAfterKNegations(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: int
"""
index = k
nums.sort()
# 先排序,然后尽量让最小的数并且是负数变成正数
for i in range(len(nums)):
if nums[i] < 0 and index > 0: # 这要做说明,index避免出现负数
nums[i] = -nums[i]
index -= 1
nums.sort() # 然后在排序一次,因为上面处理之后是乱序的,所以还要排一次
# 如果index为零那么操作已经使得原数组的总和变的最大的
if index % 2 == 1:
return sum(nums) - nums[0] * 2
else: # 如果index不为零,那么元素的数组所有的负数都已经变成了正数,所以我们只需要操作在第一个数,因为第一个数是最少的,这样才能使总和最大
return sum(nums)