神经网络与深度学习-学习笔记(1)

  1. 概述

神经网络与深度学习发展回顾

       虽然许多深度学习方法都是最近才有重大突破,但使用数据和神经网络编程的核心思想已经研究了几个世纪。 事实上,人类长期以来就有分析数据和预测未来结果的愿望,而自然科学大部分都植根于此。 例如,伯努利分布是以雅各布•伯努利(1654-1705)命名的。 而高斯分布是由卡尔•弗里德里希•高斯(1777-1855)发现的, 他发明了最小均方算法,至今仍用于解决从保险计算到医疗诊断的许多问题。 这些工具算法催生了自然科学中的一种实验方法——例如,电阻中电流和电压的欧姆定律可以用线性模型完美地描述。

       即使在中世纪,数学家对估计(estimation)也有敏锐的直觉。 例如,雅各布·克贝尔 (1460–1533)的几何学书籍举例说明,通过平均16名成年男性的脚的长度,可以得出一英尺的长度。

       随着数据的收集和可获得性,统计数据真正实现了腾飞。 罗纳德·费舍尔(1890-1962)对统计理论和在遗传学中的应用做出了重大贡献。 他的许多算法(如线性判别分析)和公式(如费舍尔信息矩阵)至今仍被频繁使用。 甚至,费舍尔在1936年发布的鸢尾花卉数据集,有时仍然被用来解读机器学习算法。 他也是优生学的倡导者,这提醒我们:数据科学在道德上存疑的使用,与其在工业和自然科学中的生产性使用一样,有着悠远而持久的历史。

       神经网络(neural networks)的得名源于生物灵感。 一个多世纪以来(追溯到1873年亚历山大·贝恩和1890年詹姆斯·谢林顿的模型),研究人员一直试图组装类似于相互作用的神经元网络的计算电路。 随着时间的推移,对生物学的解释变得不再肤浅,但这个名字仍然存在。 其核心是当今大多数网络中都可以找到的几个关键原则:

① 线性和非线性处理单元的交替,通常称为层(layers);

② 使用链式规则(也称为反向传播(backpropagation))一次性调整网络中的全部参数。

       经过最初的快速发展,神经网络的研究从1995年左右开始停滞不前,直到2005年才稍有起色。 这主要是因为两个原因。 首先,训练网络(在计算上)非常昂贵。 在上个世纪末,随机存取存储器(RAM)非常强大,而计算能力却很弱。 其次,数据集相对较小。 事实上,费舍尔1932年的鸢尾花卉数据集是测试算法有效性的流行工具, 而MNIST数据集的60000个手写数字的数据集被认为是巨大的。 考虑到数据和计算的稀缺性,核方法(kernel method)、决策树(decision tree)和图模型(graph models)等强大的统计工具(在经验上)证明是更为优越的。 与神经网络不同的是,这些算法不需要数周的训练,而且有很强的理论依据,可以提供可预测的结果。

       大约2010年开始,那些在计算上看起来不可行的神经网络算法变得热门起来,实际上是以下两点导致的: 其一,随着互联网的公司的出现,为数亿在线用户提供服务,大规模数据集变得触手可及; 另外,廉价又高质量的传感器、廉价的数据存储(克莱德定律)以及廉价计算(摩尔定律)的普及,特别是GPU的普及,使大规模算力唾手可得。

  1. 线性回归

2.1线性回归

       回归(regression)是能为一个或多个自变量与因变量之间关系建模的一类方法。 在自然科学和社会科学领域,回归经常用来表示输入和输出之间的关系。

       在机器学习领域中的大多数任务通常都与预测(prediction)有关。 当我们想预测一个数值时,就会涉及到回归问题。 常见的例子包括:预测价格(房屋、股票等)、预测住院时间(针对住院病人等)、 预测需求(零售销量等)。 但不是所有的预测都是回归问题。 分类问题的目标是预测数据属于一组类别中的哪一个。

       线性回归(linear regression)可以追溯到19世纪初, 它在回归的各种标准工具中最简单而且最流行。 线性回归基于几个简单的假设: 首先,假设自变量x和因变量y之间的关系是线性的, 即y可以表示为x中元素的加权和,这里通常允许包含观测值的一些噪声; 其次,我们假设任何噪声都比较正常,如噪声遵循正态分布。

       为了解释线性回归,我们举一个实际的例子: 我们希望根据房屋的面积(平方英尺)和房龄(年)来估算房屋价格(美元)。 为了开发一个能预测房价的模型,我们需要收集一个真实的数据集。 这个数据集包括了房屋的销售价格、面积和房龄。 在机器学习的术语中,该数据集称为训练数据集(training data set) 或训练集(training set)。 每行数据(比如一次房屋交易相对应的数据)称为样本(sample), 也可以称为数据点(data point)或数据样本(data instance)。 我们把试图预测的目标(比如预测房屋价格)称为标签(label)或目标(target)。 预测所依据的自变量(面积和房龄)称为特征(feature)或协变量(covariate)。

2.2线性二分类

定义:线性分类器则透过特征的线性组合来做出分类决定,以达到此种目的。简言之,样本通过直线(或超平面)可分。

线性分类器输入:特征向量

输出:哪一类。如果是二分类问题,则为0和1,或者是属于某类的概率,即0-1之间的数。

线性分类与线性回归差别:

输出意义不同:属于某类的概率<->回归具体值

参数意义不同:最佳分类直线<->最佳拟合直线

维度不同:前面的例子中,一个是一维的回归,一个是二维的分类

思路:构造这条二分类的“分界直线”咋构造?一边是负值,一边是正值。越属于这类,值越大(正),反

之越小(越负)。因此,考虑代入直线方程的值进一步,因为我们最终需要概率,结果在0-1之间,因此需要对值做一个变换:

梯度下降:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值