import pandas as pd # 将pandas作为第三方库导入,我们一般为pandas取一个别名叫做pd
pd.set_option('expand_frame_repr', False) # 当列太多时清楚展示
# =====导入数据
df = pd.read_csv(
r'C:\Users\simons\Desktop\xbx_stock_2019\data\a_stock_201903.csv',
encoding='gbk',
skiprows=1
)
# ===== 时间处理
# print(df['交易日期'])
# print(df.at[0, '交易日期'])
# print(type(df.at[0, '交易日期']))
# df['交易日期'] = pd.to_datetime(df['交易日期']) # 将交易日期由字符串改为时间变量
# print(df.at[0, '交易日期'])
# print(type(df.at[0, '交易日期']))
# print(pd.to_datetime('1999年1月11日')) # pd.to_datetime函数:将字符串转变为时间变量
# print(df['交易日期'])
# print(df['交易日期'].dt.year) # 输出这个日期的年份。相应的month是月份,day是天数,还有hour, minute, second
# print(df['交易日期'].dt.week) # 这一天是一年当中的第几周
# print(df['交易日期'].dt.dayofyear) # 这一天是一年当中的第几天
# print(df['交易日期'].
【python】pandas使用-时间处理
最新推荐文章于 2024-06-06 15:32:24 发布
本文详细介绍了Python数据处理库Pandas在处理时间序列数据时的各种操作,包括日期范围生成、时间戳转换、时间间隔计算等核心功能,旨在帮助数据分析者更高效地管理和分析时间序列数据。
摘要由CSDN通过智能技术生成