python数据分析
用python进行股票数据分析
rikoukai
这个作者很懒,什么都没留下…
展开
-
【python】pandas使用-分组处理操作_groupby
import pandas as pdpd.set_option('expand_frame_repr', False) # 当列太多时显示完整# =====导入数据df = pd.read_csv( r'C:\Users\Simons\Desktop\xbx_stock_2019\data\a_stock_201903.csv', encoding='gbk', skiprows=1)# print(df)# ===== groupby常用操作汇总# 根据.原创 2020-11-12 09:55:57 · 1749 阅读 · 1 评论 -
【python】pandas使用-转换数据周期resample
import pandas as pdpd.set_option('expand_frame_repr', False) # 当列太多时显示完整# === 从hdf中读取1分钟数据df: pd.DataFrame = pd.read_hdf('a_stock_100.h5', key='sh600000')print(df.head(20))# exit()# 《数据周线转换示意图》# === 第一种方法:将日线数据转为周线数据# 将交易日期设定为index# df.set_.原创 2020-11-12 09:55:28 · 2499 阅读 · 1 评论 -
【python】pandas使用-使用HDF
import pandas as pdimport ospd.set_option('expand_frame_repr', False) # 当列太多时显示完整# =====将数据存入hdf文件# 批量读取文件名称# file_list = []# # 存储csv文件的文件夹路径# file_location = r'C:\Users\Simons\Desktop\xbx_stock_2019\data\basic-trading-data\stock_data'## for .原创 2020-11-12 01:44:43 · 1798 阅读 · 1 评论 -
【python】pandas使用-批量导入数据
import pandas as pdimport ospd.set_option('expand_frame_repr', False) # 当列太多时显示完整# =====导入浦发银行(sh600000)的历史日线数据df = pd.read_csv( r'C:\Users\Simons\Desktop\xbx_stock_2019\data\basic-trading-data\stock_data\sh600004.csv', encoding='gbk', .原创 2020-11-11 21:56:26 · 1028 阅读 · 1 评论 -
【python】pandas使用-滚动操作
import pandas as pd # 将pandas作为第三方库导入,我们一般为pandas取一个别名叫做pdpd.set_option('expand_frame_repr', False) # 当列太多时清楚展示# =====导入数据df = pd.read_csv( r'C:\Users\Simons\Desktop\xbx_stock_2019\data\sh600000.csv', encoding='gbk', skiprows=1)# ===.原创 2020-11-11 21:54:44 · 935 阅读 · 0 评论 -
【python】pandas使用-时间处理
import pandas as pd # 将pandas作为第三方库导入,我们一般为pandas取一个别名叫做pdpd.set_option('expand_frame_repr', False) # 当列太多时清楚展示# =====导入数据df = pd.read_csv( r'C:\Users\simons\Desktop\xbx_stock_2019\data\a_stock_201903.csv', encoding='gbk', skiprows=1).原创 2020-11-11 21:53:42 · 429 阅读 · 0 评论 -
【python】pandas使用-字符串处理
import pandas as pd # 将pandas作为第三方库导入,我们一般为pandas取一个别名叫做pdpd.set_option('expand_frame_repr', False) # 当列太多时清楚展示# =====导入数据df = pd.read_csv( r'C:\Users\simons\Desktop\xbx_stock_2019\data\a_stock_201903.csv', encoding='gbk', skiprows=1).原创 2020-11-11 21:52:22 · 396 阅读 · 0 评论 -
【python】pandas使用-数据整理
import pandas as pd # 将pandas作为第三方库导入,我们一般为pandas取一个别名叫做pdpd.set_option('expand_frame_repr', False) # 当列太多时清楚展示# =====导入数据df = pd.read_csv( r'C:\Users\simons\Desktop\xbx_stock_2019\data\a_stock_201903.csv', encoding='gbk', skiprows=1).原创 2020-11-11 21:46:01 · 291 阅读 · 0 评论 -
【python】pandas使用-缺失处理
import pandas as pd # 将pandas作为第三方库导入,我们一般为pandas取一个别名叫做pdpd.set_option('expand_frame_repr', False) # 当列太多时清楚展示# =====导入数据df = pd.read_csv( r'C:\Users\Simons\Desktop\xbx_stock_2019\data\a_stock_201903.csv', encoding='gbk', skiprows=1).原创 2020-11-11 21:43:45 · 284 阅读 · 0 评论 -
【python】pandas使用-筛选数据
import pandas as pd # 将pandas作为第三方库导入,我们一般为pandas取一个别名叫做pdpd.set_option('expand_frame_repr', False) # 当列太多时清楚展示# =====导入数据df = pd.read_csv( # 该参数为数据在电脑中的路径, # 要注意字符串转义符号 \ ,可以使用加r变为raw string或者每一个进行\\转义 # filepath_or_buffer=r'C:\Users\s.原创 2020-11-11 13:51:29 · 946 阅读 · 0 评论 -
【python】pandas使用-列操作
import pandas as pd # 将pandas作为第三方库导入,我们一般为pandas取一个别名叫做pdpd.set_option('expand_frame_repr', False) # 当列太多时显示完整# =====导入数据df = pd.read_csv( # 该参数为数据在电脑中的路径, # 要注意字符串转义符号 \ ,可以使用加r变为raw string或者每一个进行\\转义 filepath_or_buffer=r'C:\Users\sim.原创 2020-11-11 11:39:13 · 2178 阅读 · 0 评论 -
【python】pandas使用-导入数据
import pandas as pd # 将pandas作为第三方库导入,我们一般为pandas取一个别名叫做pd# =====导入数据df = pd.read_csv( # 该参数为数据在电脑中的路径, # 要注意字符串转义符号 \ ,可以使用加r变为raw string或者每一个进行\\转义 filepath_or_buffer=r'.\sh600000.csv', # 编码格式,不同的文件有不同的编码方式,一般文件中有中文的,编码是gbk,默认是utf8 .原创 2020-11-11 10:58:40 · 2971 阅读 · 0 评论 -
【python】pandas使用-查看选取数据
import pandas as pd # 将pandas作为第三方库导入,我们一般为pandas取一个别名叫做pdpd.set_option('expand_frame_repr', False) # 当列太多时显示不清楚# =====导入数据df = pd.read_csv( # 该参数为数据在电脑中的路径, # 要注意字符串转义符号 \ ,可以使用加r变为raw string或者每一个进行\\转义 filepath_or_buffer=r'C:\Users\Sim.原创 2020-11-11 11:02:24 · 353 阅读 · 0 评论 -
【python】pandas使用-数据Series
默认数字索引 import pandas as pdimport numpy as npfrom pandas import Seriesfrom pandas import DataFrameobj=Series([1,2,3,4,5]) #Series包含行索引,列索引obj #默认数字索引结果输出:0 11 22 33 44 5dtype: int64 自定义索引 obj=Series([1,2,3,4,5...原创 2020-10-25 11:53:16 · 456 阅读 · 0 评论 -
【python】pandas使用-实例
pandas实例目录结构查看前多少行取值查看类型import numpy as npimport pandas as pdnasa=pd.read_table(r"path\file.txt") 结构 nasa.shape #结构,8583行,21列 查看前多少行 nasa.head(10) #查看前多少行 取值 asa["身高"][0]result=nasa.groupby("年龄")["身高"]nasa[1:1...原创 2020-10-25 10:39:58 · 488 阅读 · 0 评论 -
【python】numpy使用-排序搜索统计
numpy排序搜索统计目录按照行排序按照列排序堆排序归并排序排序性能比较说明索引排序取得有序最大的元素的索引最小元素的索引数组中不为0的索引import numpy as npa=np.array([[3,9,0],[1,8,2]])a结果输出:array([[3, 9, 0], [1, 8, 2]]) 按照行排序 print(np.sort(a)) #按照行排序结果输出:[[0 3 9] [1 ..原创 2020-10-24 23:00:16 · 160 阅读 · 0 评论 -
【python】numpy使用-数学统计
numpy数学统计原创 2020-10-24 22:00:13 · 227 阅读 · 0 评论 -
【python】numpy使用-创建数组
随机抓取未清零内存数组 import numpy as np x = np.empty([3,12], dtype = int) #随机抓取内存,没有清零,x结果输出:array([[ 94001510893200, 0, 140676899175152, 140676895625744, 140676922323568, 140676922367216, 140676915227696, 140676918246...原创 2020-10-20 12:29:24 · 181 阅读 · 0 评论 -
【python】numpy使用-数组属性
首先生成个数组import numpy as np a = np.array([[1,2,3],[4,5,6]])print(a)结果输出:array([[1, 2, 3],[4, 5, 6]]) shape属性 array([[1, 2, 3],[4, 5, 6]]) size属性原创 2020-10-20 12:08:47 · 648 阅读 · 1 评论 -
【python】numpy使用-对象构建
numpy对象构建目录数据类型例1例2例3描述数据创建一个复合类型自定义数据类型数据类型 例1 import numpy as np #导入模块data1=np.dtype(np.int32) #4G 数组的索引大小32 2^1024 G M K print(data1)结果输出:int32 例2 data1=np.dtype("i2") #4G 数组的索引大小32 2^1024 G M K print(data.原创 2020-10-20 11:27:21 · 136 阅读 · 0 评论 -
【python】numpy使用-创建
导入模块 目录 导入模块 import numpy as np #导入模块原创 2020-10-20 08:55:36 · 122 阅读 · 0 评论