LeetCode:35. 搜索插入位置

给定一个升序排列的无重复元素数组,寻找目标值的索引。如果目标值不存在,返回其将会被插入的位置。文章通过示例解释了如何使用二分查找算法在O(logn)的时间复杂度内解决此问题,并详细阐述了返回left的逻辑。
摘要由CSDN通过智能技术生成

LeetCode:35. 搜索插入位置

题目:

给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。

请必须使用时间复杂度为 O(log n) 的算法。

示例1:

输入: nums = [1,3,5,6], target = 5
输出: 2

示例2:

输入: nums = [1,3,5,6], target = 2
输出: 1

示例3:

输入: nums = [1,3,5,6], target = 7
输出: 4

提示:

  • 1 <= nums.length <= 104
  • 104 <= nums[i] <= 104
  • nums 为 无重复元素升序 排列数组
  • 104 <= target <= 104

思路:
1. nums为无重复的升序排列数组,且要求使用使用时间复杂度为 O(log n) 的算法易想到二分法查找

代码:

class Solution {
public:
    int searchInsert(vector<int>& nums, int target) {
        int left = 0;
        int right = nums.size() - 1;
        while(left <= right) {
            int mid = left + ((right - left) >> 1);
            if(nums[mid] > target) {
                right = mid - 1;
            }
            else if(nums[mid] < target) {
                left = mid + 1;
            }
            else return mid;
        }
         return left;
    }
};

对于返回left的说明:

  *  以上while循环中,若找到了target直接返回

  *  当原数组不包含target时,考虑while循环最后一次执行的总是 left=right=mid,

  *  此时nums[mid] 左边的数全部小于target,nums[mid]右边的数全部大于target,

  *  则此时我们要返回的插入位置分为两种情况:

  *  ①就是这个位置,即nums[mid]>target时,此时执行了right=mid-1,返回left正确

  *  ②是该位置的右边一个,即nums[mid]<target时,此时执行了left=mid+1,返回left也正确

复杂度分析

  • 时间复杂度: O(logn)
  • 空间复杂度: O(1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值