1.意外收获:ipython工具安装 pip install ipython即可安装, 命令行输入ipython --pylab即可进入pylab模式
2.%hist 命令可以查看命令行历史记录,%logstart,在IPython的pylab模式下,我们可以使用 help 命令打开 NumPy 函数的手册页面。你并不需要知道所有函数的名字,因为可以在键入少量字符后按下Tab键进行自动补全,另一种方法是在函数名后面加一个问号:
3.NumPy数组一般是同质的(但有一种特殊的数组类型例外,它是异质的),即数组中的所有元素类型必须是一致的
4.数组的 shape 属性返回一个元组(tuple),元组中的元素即为NumPy数组每一个维度上的大小。
5.numpy.array([list])把list里面的内容变为数组,若list里面还有数组即为而为数组,array 函数可以依据给定的对象生成数组,给定的对象应是类数组,如Python中的列表
6.对于数组 a ,只需要用 a[m,n] 选取各数组元素,其
中 m 和 n 为元素下标
7.在NumPy中,许多函数的参数中可以指定数据类型,通常这个参数是可选的:
In: arange(7, dtype=uint16)
Out: array([0, 1, 2, 3, 4, 5, 6], dtype=uint16)
8.数据类型对象是 numpy.dtype 类的实例。如前所述,NumPy数组是有数据类型的,更确切
地说,NumPy数组中的每一个元素均为相同的数据类型。数据类型对象可以给出单个数组元素在
内存中占用的字节数,即 dtype 类的 itemsize 属性:
In: a.dtype.itemsize
Out: 8
9.完整的NumPy数据类型列表可以在 sctypeDict.keys() 中找到:
10.reshape 函数的作用是改变数组的“形
状”,也就是改变数组的维度,其参数为一个正整数元组,分别指定数组在每个维度上的大小。
如果指定的维度和数组的元素数目不相吻合,函数将抛出异常
11.将数组展平,我们可以用 ravel 函数完成展平的操作,flatten 这个函数恰如其名, flatten 就是展平的意思,与 ravel 函数的功能相同。
不过, flatten 函数会请求分配内存来保存结果,而 ravel 函数只是返回数组的一个视图(view),除了可以使用 reshape 函数,我们也可以直接用一个正整数元组来设
置数组的维度,如下所示:
transpose 在线性代数中,转置矩阵是很常见的操作
resize resize 和 reshape 函数的功能一样,但 resize 会直接修改所操作的数组
import numpy as np # 导入numpy包
a=np.random.normal(1, 0.2, size=(5,6))
print(np.mean(a, axis=1)) # 计算每一行的均值
print(np.mean(a, axis=0)) # axis=0,计算每一列的均值
print(np.mean(a, axis=0)) # axis=0,计算每一列的均值