numpy笔记

1.意外收获:ipython工具安装 pip install ipython即可安装, 命令行输入ipython --pylab即可进入pylab模式

2.%hist 命令可以查看命令行历史记录,%logstart,在IPython的pylab模式下,我们可以使用 help 命令打开 NumPy 函数的手册页面。你并不需要知道所有函数的名字,因为可以在键入少量字符后按下Tab键进行自动补全,另一种方法是在函数名后面加一个问号:

3.NumPy数组一般是同质的(但有一种特殊的数组类型例外,它是异质的),即数组中的所有元素类型必须是一致的

4.数组的 shape 属性返回一个元组(tuple),元组中的元素即为NumPy数组每一个维度上的大小。

5.numpy.array([list])把list里面的内容变为数组,若list里面还有数组即为而为数组,array 函数可以依据给定的对象生成数组,给定的对象应是类数组,如Python中的列表

6.对于数组 a ,只需要用 a[m,n] 选取各数组元素,其
中 m 和 n 为元素下标

7.在NumPy中,许多函数的参数中可以指定数据类型,通常这个参数是可选的:
In: arange(7, dtype=uint16)
Out: array([0, 1, 2, 3, 4, 5, 6], dtype=uint16)

8.数据类型对象是 numpy.dtype 类的实例。如前所述,NumPy数组是有数据类型的,更确切
地说,NumPy数组中的每一个元素均为相同的数据类型。数据类型对象可以给出单个数组元素在
内存中占用的字节数,即 dtype 类的 itemsize 属性:
In: a.dtype.itemsize
Out: 8

9.完整的NumPy数据类型列表可以在 sctypeDict.keys() 中找到:

10.reshape 函数的作用是改变数组的“形
状”,也就是改变数组的维度,其参数为一个正整数元组,分别指定数组在每个维度上的大小。
如果指定的维度和数组的元素数目不相吻合,函数将抛出异常

11.将数组展平,我们可以用 ravel 函数完成展平的操作,flatten 这个函数恰如其名, flatten 就是展平的意思,与 ravel 函数的功能相同。
不过, flatten 函数会请求分配内存来保存结果,而 ravel 函数只是返回数组的一个视图(view),除了可以使用 reshape 函数,我们也可以直接用一个正整数元组来设
置数组的维度,如下所示:

transpose 在线性代数中,转置矩阵是很常见的操作

resize resize 和 reshape 函数的功能一样,但 resize 会直接修改所操作的数组

import numpy as np # 导入numpy包
a=np.random.normal(1, 0.2, size=(5,6))
print(np.mean(a, axis=1)) # 计算每一行的均值
print(np.mean(a, axis=0)) # axis=0,计算每一列的均值
print(np.mean(a, axis=0)) # axis=0,计算每一列的均值

### 回答1: numpy一个高性能的科学计算库,用于处理大型数据集和矩阵运算。它是Python科学计算生态系统中最重要的库之一,提供了丰富的功能和工具。 在numpy的学习过程中,我创建一个名为"numpy笔记.xmind"的思维导图来总结和记录重要的概念和函数。 首先,我在思维导图中列出了numpy的基本数据结构,包括多维数组(ndarray)、切片和索引。我理解了如何创建和操作这些数据结构,以及如何使用切片和索引访问数组中的元素。 其次,在思维导图中,我详细记录了numpy中的常用函数和方法。这些函数包括数学运算(如加法、乘法和指数运算)、统计函数(如平均值、标准差和方差)和数组操作(如形状变换、拼接和切割)。对于每个函数,我还注明了其参数和用法,以便以后参考。 此外,我还在思维导图中添加了numpy的广播功能和ufunc函数。广播允许我们在不同形状的数组之间进行元素级别的操作,而ufunc函数则可以对数组进行逐元素的函数调用。对于这两个功能,我记录了它们的应用场景和使用方法。 最后,我在思维导图中补充了一些numpy的高级特性和应用,如随机数生成、文件IO以及与其他科学计算库(如pandas和matplotlib)的集成。这些特性和应用使numpy成为了进行数据分析和科学计算的重要工具。 通过创建和总结"numpy笔记.xmind"这个思维导图,我能够更好地理解和掌握numpy的知识。这份笔记将成为我学习和使用numpy的重要参考资料,帮助我在科学计算和数据分析的过程中提高效率和准确性。 ### 回答2: numpy(Numerical Python)是Python中用于进行科学计算的一个库。它提供了丰富的高性能数值计算工具,特别是对于大规模多维数组的操作。下面是关于numpy的一些笔记。 1. 数组的创建numpy使用ndarray对象来存储多维数组。可以使用numpy.array()函数创建数组,也可以使用numpy.zeros()、numpy.ones()等函数创建特定初始值的数组。 2. 数组的属性:可以使用ndarray的属性来获取数组的形状、大小、数据类型等信息。例如,shape属性可以得到数组的维度大小,dtype属性可以得到数组的数据类型。 3. 数组的索引和切片:可以通过索引来访问数组中的元素。numpy中的索引从0开始,可以使用负数表示相对于数组尾部的位置。切片可以用来获取数组的部分元素。可以使用冒号分隔切片的起始、结束和步长值。 4. 数组的运算:numpy支持对数组的逐元素运算,包括加减乘除、求幂、取余等。可以使用numpy的函数进行常见的数学运算,也可以使用ndarray对象的方法进行相应的操作。 5. 广播:numpy中的广播机制可以自动处理形状不一致的数组之间的运算。广播可以使得形状不一致的数组能够按需扩展以便进行元素运算,而不需要进行明确的形状调整操作。 6. 数组的重塑和转置:可以使用reshape()函数对数组进行重新排列,改变其形状。transpose()函数可以用来进行数组的转置操作。 7. 数组的聚合操作:numpy提供了很多用于数组聚合操作的函数,例如对数组进行求和、求平均、求最大最小值等。 8. 数组的存储和读取:可以使用numpy提供的函数将数组保存到文件中,也可以使用numpy的load()函数从文件中加载数组。 以上是关于numpy的一些基础笔记numpy在科学计算、数据分析等领域具有广泛的应用。掌握numpy的基本操作和常用函数,能够更高效地进行数值计算和数据处理任务。 ### 回答3: numpy一个开源的Python库,提供了高效的多维数组对象以及对数组操作的函数。笔记.xmind是一种思维导图的文件格式。结合两者,我可以将numpy的使用方法和相关概念通过思维导图的方式记录下来。 在笔记.xmind中,我可以使用中心主题表示numpy,然后通过子主题展开numpy的各个方面。例如,我可以创建一个子主题来介绍numpy的数组对象,包括数组的创建、形状、类型等信息。另外,我还可以创建子主题来记录numpy数组操作的函数,例如数组的索引与切片操作、数组的运算操作等。在每个子主题中,我可以使用节点来记录具体的代码示例,以及相关的说明和注意事项。 除了记录numpy的使用方法外,我还可以创建子主题来介绍numpy中的常用概念和特性。例如,我可以创建一个子主题来介绍numpy中的广播机制,以及在数组运算中的应用。另外,我还可以创建子主题来介绍numpy中的向量化操作和矩阵运算,以及其在科学计算中的重要性。 在整个思维导图中,我可以使用不同的颜色、字体和图标来区分不同的主题或节点,以便更好地组织和呈现信息。可以使用箭头来表示不同主题之间的关系,例如通过箭头表示某个主题是另一个主题的子主题或相关主题。 通过将numpy的使用方法和相关概念以思维导图的形式记录在笔记.xmind中,我可以更清晰地了解和掌握numpy的知识,并且可以随时查阅和复习。这样可以帮助我更好地应用numpy进行数据分析和科学计算,并提高工作效率和代码质量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值