大家好,我是小F~
今天给大家介绍一个AI体育实战的项目,羽毛球比赛视频数据分析。
通过计算机视觉技术来检测羽毛球比赛中的运动员和羽毛球。
使用opencv和yolo算法,提供对运动员和羽毛球的准确检测,以增强对羽毛球比赛的分析。
用不同的检测模型,检测比赛中的运动员和羽毛球。
实现实时分析羽毛球比赛数据情况。
整个项目是用Python3.10开发的,相关依赖可以在requirements.txt中找到。
首先使用conda,创建一个虚拟环境,Python版本3.10。
# 创建虚拟环境
conda create --name badminton python= 3.10
# 激活虚拟环境
conda activate badminton
然后安装下面这些Python库依赖。
torch==2.3.1
torchvision==0.18.1
ultralytics==8.2.38
numpy==1.26.4
opencv-python==4.9.0.80
lapx==0.5.11
cython-bbox==0.1.5
shapely==2.0.3
psycopg2-binary==2.9.9
hydra-core==1.3.2
Flask==3.0.3
tensorrt==10.1.0
dill==0.3.9
# 安装依赖
pip install -r requirements.txt
然后就可以运行代码了,main.py文件。
得到实时结果。
获取球员和羽毛球的位置坐标信息,然后再进行进一步的分析。
好了,今天的分享到这里结束了,感兴趣的同学可以自己去实践下~
项目源码,公众号后台回复:「羽毛球」,即可获得。
万水千山总是情,点个 👍 行不行。
推荐阅读
··· END ···