使用OpenCV和YOLO算法,分析羽毛球比赛(附源码)

f04077906bc170f489b84f10b08b9fa6.gif

大家好,我是小F~

今天给大家介绍一个AI体育实战的项目,羽毛球比赛视频数据分析。

通过计算机视觉技术来检测羽毛球比赛中的运动员和羽毛球。

使用opencv和yolo算法,提供对运动员和羽毛球的准确检测,以增强对羽毛球比赛的分析。

c0cf74cc4cfacfea11265b74a559d24b.gif

用不同的检测模型,检测比赛中的运动员和羽毛球。

c3b95e3c3cc13549fb2d1b2cd5ee5f76.jpeg

971367103dfe2d105674fdd28a0c1e36.jpeg

实现实时分析羽毛球比赛数据情况。

整个项目是用Python3.10开发的,相关依赖可以在requirements.txt中找到。

首先使用conda,创建一个虚拟环境,Python版本3.10。

# 创建虚拟环境
conda create --name badminton python= 3.10
# 激活虚拟环境
conda activate badminton

然后安装下面这些Python库依赖。

torch==2.3.1
torchvision==0.18.1
ultralytics==8.2.38
numpy==1.26.4
opencv-python==4.9.0.80
lapx==0.5.11
cython-bbox==0.1.5
shapely==2.0.3
psycopg2-binary==2.9.9
hydra-core==1.3.2
Flask==3.0.3
tensorrt==10.1.0
dill==0.3.9
# 安装依赖
pip install -r requirements.txt

然后就可以运行代码了,main.py文件。

7034d2998b47ecbeb08bf13a43ef097f.png

得到实时结果。

babbbd48c6c1020a14bd727e3543136d.png

获取球员和羽毛球的位置坐标信息,然后再进行进一步的分析。

b377d06854e98e3d1b5e23c109069943.png

好‍了,今天的分享到这里结束了,感兴趣的同学可以自己去实践下~

项目源码,公众号后台回复:「羽毛球」,即可获得。

万水千山总是情,点个 👍 行不行

推荐阅读

8373e6ab3b21fe4c751650cc17dbb884.jpeg

19842f8771a3c0272bc0295e3ad83adb.jpeg

a20d8a5f5c85de5fca6f13861d0fd971.jpeg

···  END  ···

b4b80a791627f05b6c3843941e3e3416.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值