【完整项目】基于Python+Tkinter+OpenCV+Yolo+手写OCR的双模式答题卡识别软件的设计与实现

本文介绍了一个基于Python、Tkinter、OpenCV和Yolo的双模式答题卡识别软件,解决了传统图像处理方法的痛点,实现了高准确度和快速识别。软件具有友好的用户界面,支持手写OCR识别,适用于各种答题卡场景。通过模板制作、识别算法和深度学习模型,该软件能精确识别填涂区域,解决噪声干扰和填涂不规范等问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

目前,主流的答题卡识别软件都是基于传统的图像处理方法,经过二值化、滤波、去噪等流程提取到答题卡的填涂区域。思路正确,但是效果一般,无法广泛应用到实际中。由于答题卡的样式五花八门,考试的填涂方式千奇百怪,上述传统的图像处理方法不能很好的解决答题卡识别的痛点——即与考生填涂区域有相似噪声时,滤波和去噪过程阈值难以选择。阈值过小,不能提取出全部的填涂区域;阈值过大,会剔除掉考生的填涂结果,从而造成识别错误。从成本考虑,不是所有的答题卡都有大型考试那样严格的标准,填涂区域用红色标出(例:[A]),考生用2B铅笔填涂。更多的是黑色印刷的填涂区域背景,这样就导致如果考生填涂的不充分、不连贯、填涂浅、填涂区域被污染、填涂的形状奇怪等,就可能导致识别错误或者误识别。除此之外,在一些考试中,批卷老师更希望的是考生都有成绩,而不是因为严格的限制在填涂的方式上扣分。

针对上述问题,我们提出一种基于Python+Tkinter+OpenCV+Yolo+手写OCR的双模式答题卡识别软件,使用Python内置的GUI界面开发工具Tkinter来实现友好的用户界面。针对基于传统的图像处理方法,我们做出了巨大改进,用一种巧妙的方法来解决上述的传统图像处理方法的痛点,

【资源介绍】 1、该资源包括项目的全部源码,下载可以直接使用! 2、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业和毕设项目,也可以作为小白实战演练和初期项目立项演示的重要参考借鉴资料。 3、本资源作为“学习资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研和多多调试实践。 基于python答题卡检测、试题切分、学生考号识别、选择题自动批改新版源码+说明.zip 基于python答题卡检测、试题切分、学生考号识别、选择题自动批改新版源码+说明.zip 基于python答题卡检测、试题切分、学生考号识别、选择题自动批改新版源码+说明.zip 基于python答题卡检测、试题切分、学生考号识别、选择题自动批改新版源码+说明.zip 基于python答题卡检测、试题切分、学生考号识别、选择题自动批改新版源码+说明.zip 基于python答题卡检测、试题切分、学生考号识别、选择题自动批改新版源码+说明.zip 基于python答题卡检测、试题切分、学生考号识别、选择题自动批改新版源码+说明.zip 基于python答题卡检测、试题切分、学生考号识别、选择题自动批改新版源码+说明.zip 基于python答题卡检测、试题切分、学生考号识别、选择题自动批改新版源码+说明.zip 基于python答题卡检测、试题切分、学生考号识别、选择题自动批改新版源码+说明.zip 基于python答题卡检测、试题切分、学生考号识别、选择题自动批改新版源码+说明.zip 基于python答题卡检测、试题切分、学生考号识别、选择题自动批改新版源码+说明.zip 基于python答题卡检测、试题切分、学生考号识别、选择题自动批改新版源码+说明.zip 基于python答题卡检测、试题切分、学生考号识别、选择题自动批改新版源码+说明.zip
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十小大

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值