Java 序列化的高级认识

引言 将 Java 对象序列化为二进制文件的 Java 序列化技术是 Java 系列技术中一个较为重要的技术点,在大部分情况下,开发人员只需要了解被序列化的类需要实现 Serializable 接口,使用 ObjectInputStream 和 ObjectOutputStream 进行对象的读...

2014-03-23 19:01:02

阅读数 1263

评论数 0

Spring全局事务之WebLogicJtaTransactionManager

全局事务是指在一个事务中涉及到几个事务参入者,这些事务参入者可以是我们常见的数据库操作,消息(MQ)操作等等.如同时进行下面的操作,比如"转账"操作发生在两个数据库: 1,从数据库A的的表中将某个帐号的余额减少. 2从数据库B的的表中将某个帐号的余额增加. 3,提交在数据...

2014-03-20 23:17:32

阅读数 1561

评论数 0

Spring全局事务之JTA+Atomikos

本文简单介绍一下在Spring通过声明管理一个有数据库和ActiveMQ参入的全局事务,事务管理器的实现为Atomikos.全局事务的步骤为 1,更新数据库操作. 2访问ActiveMQ资源. 3,提交在数据库A中的操作. 4,提交在ActiveMQ中的操作. 上面的所有步骤应该保证要么...

2014-03-20 23:15:51

阅读数 1513

评论数 0

Spring多数据源的配置和使用

最近开发一个数据同步的小功能,需要从A主机的Oracle数据库中把数据同步到B主机的Oracle库中。当然能够用dmp脚本或者SQL脚本是最好,但是对于两边异构的表结构来说,直接导入不可行。然后在需要实时同步的情况下用存储过程也不可行了。写一个数据同步的小程序是个不错的选择。使用框架的封装和连接池...

2014-03-20 23:02:44

阅读数 51961

评论数 4

Spring基于ThreadLocal的“资源-事务”线程绑定设计的缘起

题目起的有些拗口了,简单说,这篇文章想要解释Spring为什么会选择使用ThreadLocal将资源和事务绑定到线程上,这背后有着什么样的起因和设计动机,通过分析帮助大家更清晰地认识Spring的线程绑定机制。 ThreadLocal不是用来解决对象共享访问问题的,而主要是提供了保持对象...

2014-03-18 23:16:01

阅读数 1171

评论数 0

JAVA深复制(深克隆)与浅复制(浅克隆)

1.浅复制与深复制概念 ⑴浅复制(浅克隆或者影子克隆) 被复制对象的所有变量都含有与原来的对象相同的值,而所有的对其他对象的引用仍然指向原来的对象。换言之,浅复制仅仅复制所考虑的对象,而不 复制它所引用的对象。 ⑵深复制(深克隆) 被复制对象的所有变量都含有与原来的对象相同的值,除去那些引用其...

2014-03-18 00:21:20

阅读数 956

评论数 0

技术网站收集

算法介绍 :http://www.icrany.com

2014-03-17 13:43:27

阅读数 712

评论数 0

Java 深度克隆 clone()方法重写 equals()方法的重写

1、为什么要重写clone()方法? 答案:Java中的浅度复制是不会把要复制的那个对象的引用对象重新开辟一个新的引用空间,当我们需要深度复制的时候,这个时候我们就要重写clone()方法。 2、为什么要重载equal方法? 答案:因为Object的equal方法默认是两个对象的...

2014-03-17 13:34:39

阅读数 6696

评论数 2

合并两个已经排序的数组为另一个数组

要求算法在最坏的情况下所用的计算时间为O(n), 且只用到O(1)的辅助空间. void MergeArray(int *pArray1, int nLen1, int *pArray2, int nLen2, int *pArray) {     int i, j, n; ...

2014-03-13 23:56:34

阅读数 1436

评论数 0

在给定的数组中找出两个元素和为给定值的所有元素对

使用hash map: 1假设V为给定的值,A为给定的数组。 2创建hash map M,M将从数组元素映射到出现次数。 3对数组中的元素A[i]: 如果 V-A[i] 在M中,打印A[I] 和V-A[I], M[V-A[i]] 次. 如果A[i]在M中,增加M[A[...

2014-03-13 23:34:49

阅读数 923

评论数 0

如何对n个数进行排序,要求时间复杂度O(n),空间复杂度O(1)

题目描述: 如何对n个数进行排序,要求时间复杂度O(n),空间复杂度O(1) 解析: 利用计数排序法,设置一大小为65536的int数组,范围a[0]~a[65535],并初始为0,然后遍历n个数,假设这n个数在数组array[0...n-1]中,则i取值从0到n-1同时执行a[...

2014-03-13 00:18:59

阅读数 3429

评论数 1

提示
确定要删除当前文章?
取消 删除
关闭
关闭