毕设项目分享 车牌识别系统实现【全网最详细】

0 简介

今天学长向大家介绍一个机器视觉的毕设项目,基于机器视觉的车牌识别

车牌识别系统实现【全网最详细】 - opencv 卷积神经网络 机器学习 深度学习

🧿 选题指导, 项目分享:见文末

1 车牌识别原理和流程

车牌识别是基于图像分割和图像识别理论,对含有车辆号牌的图像进行分析处理,从而确定牌照在图像中的位置,并进一步提取和识别出文本字符。

一个典型的车牌识别处理过程包括:图像采集、图像预处理、车牌定位、字符分割、字符识别及结果输出等处理过程。各个处理过程相辅相成,每个处理过程均须保证其高效和较高的抗干扰能力,只有这样才能保证识别功能达到满意的功能品质。

车牌识别系统的实现方式主要分两种,一种为静态图像识别,另一种为动态视频流识别。静态图像识别受限于图像质量、车牌污损度、车牌倾斜度等因素。动态视频流识别则需要更快的识别速度,受限于处理器的性能指标,特别是在移动终端实现车牌实时识别需要更多性能优化。

虽然车牌识别包含6大处理过程,但核心算法主要位于车牌定位、字符分割及字符识别这三个模块中。

在这里插入图片描述

1.1 车牌定位

车牌定位的主要工作是从静态图片或视频帧中找到车牌位置,并把车牌从图像中单独分离出来以供后续处理模块处理。车牌定位是影响系统性能的重要因素之一。目前车牌定位的方法很多,但总的来说可以分为两大类:

在这里插入图片描述

1.2 基于图形图像学的定位方法。

主要有(1)基于颜色的定位方法,如彩色边缘算法、颜色距离和相似度算法等;(2)基于纹理的定位方法,如小波纹理、水平梯度差分纹理等;(3)基于边缘检测的定位方法;(4)基于数学形态的定位方法。

基于图形图像学的定位方法,容易受到外界干扰信息的干扰而造成定位失败。如基于颜色分析的定位方法中,如果车牌背景颜色与车牌颜色相近,则很难从背景中提取车牌;在基于边缘检测的方法中,车牌边缘的污损也很容易造成定位失败。外界干扰信息的干扰也会欺骗定位算法,使得定位算法生成过多的非车牌候选区域,增大了系统负荷。

1.3 基于机器学习的定位方法。

基于机器学习的方法有基于特征工程的定位方法和基于神经网络的定位方法等。例如我们可以通过opencv提供的基于haar特征的级联分类器,训练一个车牌定位系统。但该方法训练十分费时,分类定位的效率也较低。因此当前在目标定位方面,基于神经网络的方法是主流方法。在基于神经网络的定位方法中,主要采用卷积神经网络学习目标特征。由于卷积神经网络具有平移不变性,在学习过程中可以辅以候选区域,并对候选区域进行分类。正确分类的候选区域即为目标定位的位置。此类方法有较多实现模型,如RCNN、fast erRCNN、SSD等。

1.4 字符分割

字符分割的任务是把多列或多行字符图像中的每个字符从整个图像中切割出来成为单个字符图像。传统字符分割算法可以归纳为以下两类类:直接分割法、基于图像形态学的分割法。直接分割法简单,基于一些先验知识,如车牌字符分布情况等,同时辅助一些基本投影算法实现分割;基于形态学的分割方法使用边缘检测、膨胀腐蚀等处理来确定字符图像位置。传统的字符分割算法同样对外界干扰敏感,如车牌倾斜度、字符污损粘连等。车牌字符的正确分割对字符的识别是很关键的,在分割正确的情况下,才能保证识别的准确率。而随着神经网络理论的不断发展,端到端的图片分类识别技术也有很大突破,因此很多OCR软件逐步摆脱传统字符分割处理,由识别网络对多字符进行直接识别。

在这里插入图片描述

1.5 字符识别

字符识别是将包含一个或多个字符的图片中提取字符编码的过程。字符识别的典型方法即基于机器学习的图片分类方法。在图片分类方法中,一幅图片只能输出一个分类,也就是说一幅图片中只能包含一个字符图像。这就要求字符分割有很高的准确率。另一种识别方法即端到端的基于循环神经网络的字符识别方法。该方法将整个车牌图片输入网络,神经网络将直接输出所有字符。端到端的方法直接去除了字符分割过程,免去了字符分割错误带来的稳定性损失,但端到端方法同样对其他干扰如车牌倾斜度比较敏感。

2 基于机器学习的车牌识别

在这里插入图片描述

前面的车牌检测和字符分割学长这里就不多复述了,这里着重讲解如何使用机器学习中的支持向量机SVM来进行车牌字符识别。

2.1 支持向量机SVM

SVM是支持向量机(Support Vector Machine)的简称,对于解决小样本、非线性、高维的模式识别问题有很多特有的优势。

简单地讲呢,SVM分类算法的实质就是在样本的特征空间中找到一个最优的超平面,使这个超平面离所有的类的样本的距离最小者最大化。

如下图所示,总共有两类,每类的样本数为五,最优超平面即为可以将两类分开,且两类中离分类面最近的样本与分类面的距离最大。

在这里插入图片描述
总而言之: SVM实质上是一个类分类器,是一个能够将不同类样本在样本空间分隔的超平面。

2.2 SVM识别字符

定义

class SVM(StatModel):
	def __init__(self, C = 1, gamma = 0.5):
		self.model = cv2.ml.SVM_create()
		self.model.setGamma(gamma)
		self.model.setC(C)
		self.model.setKernel(cv2.ml.SVM_RBF)
		self.model.setType(cv2.ml.SVM_C_SVC)
#训练svm
	def train(self, samples, responses):
		self.model.train(samples, cv2.ml.ROW_SAMPLE, responses)

调用方法,喂数据

	def train_svm(self):
		#识别英文字母和数字
		self.model = SVM(C=1, gamma=0.5)
		#识别中文
		self.modelchinese = SVM(C=1, gamma=0.5)
		if os.path.exists("svm.dat"):
			self.model.load("svm.dat")

训练,保存模型

		else:
			chars_train = []
			chars_label = []
			
			for root, dirs, files in os.walk("train\\chars2"):
				if len(os.path.basename(root)) > 1:
					continue
				root_int = ord(os.path.basename(root))
				for filename in files:
					filepath = os.path.join(root,filename)
					digit_img = cv2.imread(filepath)
					digit_img = cv2.cvtColor(digit_img, cv2.COLOR_BGR2GRAY)
					chars_train.append(digit_img)
					#chars_label.append(1)
					chars_label.append(root_int)
			
			chars_train = list(map(deskew, chars_train))
			chars_train = preprocess_hog(chars_train)
			#chars_train = chars_train.reshape(-1, 20, 20).astype(np.float32)
			chars_label = np.array(chars_label)
			print(chars_train.shape)
			self.model.train(chars_train, chars_label)

车牌字符数据集如下

在这里插入图片描述
在这里插入图片描述

这些是字母的训练数据,同样的还有我们车牌的省份简写:

在这里插入图片描述

在这里插入图片描述

核心代码

predict_result = []
		roi = None
		card_color = None
		for i, color in enumerate(colors):
			if color in ("blue", "yello", "green"):
				card_img = card_imgs[i]
				gray_img = cv2.cvtColor(card_img, cv2.COLOR_BGR2GRAY)
				#黄、绿车牌字符比背景暗、与蓝车牌刚好相反,所以黄、绿车牌需要反向
				if color == "green" or color == "yello":
					gray_img = cv2.bitwise_not(gray_img)
				ret, gray_img = cv2.threshold(gray_img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
				#查找水平直方图波峰
				x_histogram  = np.sum(gray_img, axis=1)
				x_min = np.min(x_histogram)
				x_average = np.sum(x_histogram)/x_histogram.shape[0]
				x_threshold = (x_min + x_average)/2
				wave_peaks = find_waves(x_threshold, x_histogram)
				if len(wave_peaks) == 0:
					print("peak less 0:")
					continue
				#认为水平方向,最大的波峰为车牌区域
				wave = max(wave_peaks, key=lambda x:x[1]-x[0])
				gray_img = gray_img[wave[0]:wave[1]]
				#查找垂直直方图波峰
				row_num, col_num= gray_img.shape[:2]
				#去掉车牌上下边缘1个像素,避免白边影响阈值判断
				gray_img = gray_img[1:row_num-1]
				y_histogram = np.sum(gray_img, axis=0)
				y_min = np.min(y_histogram)
				y_average = np.sum(y_histogram)/y_histogram.shape[0]
				y_threshold = (y_min + y_average)/5#U和0要求阈值偏小,否则U和0会被分成两半

				wave_peaks = find_waves(y_threshold, y_histogram)

				#for wave in wave_peaks:
				#	cv2.line(card_img, pt1=(wave[0], 5), pt2=(wave[1], 5), color=(0, 0, 255), thickness=2) 
				#车牌字符数应大于6
				if len(wave_peaks) <= 6:
					print("peak less 1:", len(wave_peaks))
					continue
				
				wave = max(wave_peaks, key=lambda x:x[1]-x[0])
				max_wave_dis = wave[1] - wave[0]
				#判断是否是左侧车牌边缘
				if wave_peaks[0][1] - wave_peaks[0][0] < max_wave_dis/3 and wave_peaks[0][0] == 0:
					wave_peaks.pop(0)
				
				#组合分离汉字
				cur_dis = 0
				for i,wave in enumerate(wave_peaks):
					if wave[1] - wave[0] + cur_dis > max_wave_dis * 0.6:
						break
					else:
						cur_dis += wave[1] - wave[0]
				if i > 0:
					wave = (wave_peaks[0][0], wave_peaks[i][1])
					wave_peaks = wave_peaks[i+1:]
					wave_peaks.insert(0, wave)
				
				#去除车牌上的分隔点
				point = wave_peaks[2]
				if point[1] - point[0] < max_wave_dis/3:
					point_img = gray_img[:,point[0]:point[1]]
					if np.mean(point_img) < 255/5:
						wave_peaks.pop(2)
				
				if len(wave_peaks) <= 6:
					print("peak less 2:", len(wave_peaks))
					continue
				part_cards = seperate_card(gray_img, wave_peaks)
				for i, part_card in enumerate(part_cards):
					#可能是固定车牌的铆钉
					if np.mean(part_card) < 255/5:
						print("a point")
						continue
					part_card_old = part_card
					w = abs(part_card.shape[1] - SZ)//2
					
					part_card = cv2.copyMakeBorder(part_card, 0, 0, w, w, cv2.BORDER_CONSTANT, value = [0,0,0])
					part_card = cv2.resize(part_card, (SZ, SZ), interpolation=cv2.INTER_AREA)
					
					#part_card = deskew(part_card)
					part_card = preprocess_hog([part_card])
					if i == 0:
						resp = self.modelchinese.predict(part_card)
						charactor = provinces[int(resp[0]) - PROVINCE_START]
					else:
						resp = self.model.predict(part_card)
						charactor = chr(resp[0])
					#判断最后一个数是否是车牌边缘,假设车牌边缘被认为是1
					if charactor == "1" and i == len(part_cards)-1:
						if part_card_old.shape[0]/part_card_old.shape[1] >= 7:#1太细,认为是边缘
							continue
					predict_result.append(charactor)
				roi = card_img
				card_color = color
				break
				
		return predict_result, roi, card_color#识别到的字符、定位的车牌图像、车牌颜色


识别结果

在这里插入图片描述

3 深度学习字符识别

识别阶段是我们的车牌自动检测与识别系统的最后一个环节,识别是基于前面环节得到的单个字符图像。我们的模型将对这些图像进行预测,从而得到最终的车牌号码。

为了尽可能利用训练数据,我们将每个字符单独切割,得到一个车牌字符数据集,该数据集中包含11个类(数字0-9以及阿拉伯单词),每个类包含30~40张字符图像,图像为28X28的PNG格式。

然后,我们就多层感知器MLP和K近邻分类器KNN的比较进行了一些调研,研究结果标明,对于多层感知器而言,如果隐层的神经元增多,那么分类器的性能就会提高;同样,对于KNN而言,性能也是随着近邻数量的增多而提高。不过由于KNN的可调整潜力要远远小于MLP,因此我们最终选择在这个阶段使用多层感知器MLP网络来识别分割后的车牌字符:

在这里插入图片描述

网络结构
在这里插入图片描述

关键代码

作者:丹成学长,q746876041

#coding=utf-8
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D,MaxPool2D
from keras.optimizers import SGD
from keras import backend as K

K.set_image_dim_ordering('tf')


import cv2
import numpy as np



index = {"京": 0, "沪": 1, "津": 2, "渝": 3, "冀": 4, "晋": 5, "蒙": 6, "辽": 7, "吉": 8, "黑": 9, "苏": 10, "浙": 11, "皖": 12,
         "闽": 13, "赣": 14, "鲁": 15, "豫": 16, "鄂": 17, "湘": 18, "粤": 19, "桂": 20, "琼": 21, "川": 22, "贵": 23, "云": 24,
         "藏": 25, "陕": 26, "甘": 27, "青": 28, "宁": 29, "新": 30, "0": 31, "1": 32, "2": 33, "3": 34, "4": 35, "5": 36,
         "6": 37, "7": 38, "8": 39, "9": 40, "A": 41, "B": 42, "C": 43, "D": 44, "E": 45, "F": 46, "G": 47, "H": 48,
         "J": 49, "K": 50, "L": 51, "M": 52, "N": 53, "P": 54, "Q": 55, "R": 56, "S": 57, "T": 58, "U": 59, "V": 60,
         "W": 61, "X": 62, "Y": 63, "Z": 64,"港":65,"学":66 ,"O":67 ,"使":68,"警":69,"澳":70,"挂":71};

chars = ["京", "沪", "津", "渝", "冀", "晋", "蒙", "辽", "吉", "黑", "苏", "浙", "皖", "闽", "赣", "鲁", "豫", "鄂", "湘", "粤", "桂",
             "琼", "川", "贵", "云", "藏", "陕", "甘", "青", "宁", "新", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A",
             "B", "C", "D", "E", "F", "G", "H", "J", "K", "L", "M", "N", "P",
         "Q", "R", "S", "T", "U", "V", "W", "X",
             "Y", "Z","港","学","O","使","警","澳","挂" ];



def Getmodel_tensorflow(nb_classes):
    # nb_classes = len(charset)

    img_rows, img_cols = 23, 23
    # number of convolutional filters to use
    nb_filters = 32
    # size of pooling area for max pooling
    nb_pool = 2
    # convolution kernel size
    nb_conv = 3

    # x = np.load('x.npy')
    
    # y = np_utils.to_categorical(range(3062)*45*5*2, nb_classes)
    # weight = ((type_class - np.arange(type_class)) / type_class + 1) ** 3
    # weight = dict(zip(range(3063), weight / weight.mean()))  # 调整权重,高频字优先

    model = Sequential()
    model.add(Conv2D(32, (5, 5),input_shape=(img_rows, img_cols,1)))
    model.add(Activation('relu'))
    model.add(MaxPool2D(pool_size=(nb_pool, nb_pool)))
    model.add(Dropout(0.25))
    model.add(Conv2D(32, (3, 3)))
    model.add(Activation('relu'))
    model.add(MaxPool2D(pool_size=(nb_pool, nb_pool)))
    model.add(Dropout(0.25))
    model.add(Conv2D(512, (3, 3)))
    # model.add(Activation('relu'))
    # model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))
    # model.add(Dropout(0.25))
    model.add(Flatten())
    model.add(Dense(512))
    model.add(Activation('relu'))
    model.add(Dropout(0.5))
    model.add(Dense(nb_classes))
    model.add(Activation('softmax'))
    model.compile(loss='categorical_crossentropy',
                  optimizer='adam',
                  metrics=['accuracy'])
    return model




def Getmodel_ch(nb_classes):
    # nb_classes = len(charset)

    img_rows, img_cols = 23, 23
    # number of convolutional filters to use
    nb_filters = 32
    # size of pooling area for max pooling
    nb_pool = 2
    # convolution kernel size
    nb_conv = 3

    # x = np.load('x.npy')
    # y = np_utils.to_categorical(range(3062)*45*5*2, nb_classes)
    # weight = ((type_class - np.arange(type_class)) / type_class + 1) ** 3
    # weight = dict(zip(range(3063), weight / weight.mean()))  # 调整权重,高频字优先

    model = Sequential()
    model.add(Conv2D(32, (5, 5),input_shape=(img_rows, img_cols,1)))
    model.add(Activation('relu'))
    model.add(MaxPool2D(pool_size=(nb_pool, nb_pool)))
    model.add(Dropout(0.25))
    model.add(Conv2D(32, (3, 3)))
    model.add(Activation('relu'))
    model.add(MaxPool2D(pool_size=(nb_pool, nb_pool)))
    model.add(Dropout(0.25))
    model.add(Conv2D(512, (3, 3)))
    # model.add(Activation('relu'))
    # model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))
    # model.add(Dropout(0.25))
    model.add(Flatten())
    model.add(Dense(756))
    model.add(Activation('relu'))
    model.add(Dropout(0.5))
    model.add(Dense(nb_classes))
    model.add(Activation('softmax'))
    model.compile(loss='categorical_crossentropy',
                  optimizer='adam',
                  metrics=['accuracy'])
    return model



model  = Getmodel_tensorflow(65)
#构建网络

model_ch = Getmodel_ch(31)

model_ch.load_weights("./model/char_chi_sim.h5")
# model_ch.save_weights("./model/char_chi_sim.h5")
model.load_weights("./model/char_rec.h5")
# model.save("./model/char_rec.h5")


def SimplePredict(image,pos):
    image = cv2.resize(image, (23, 23))
    image = cv2.equalizeHist(image)
    image = image.astype(np.float) / 255
    image -= image.mean()
    image = np.expand_dims(image, 3)
    if pos!=0:
        res = np.array(model.predict(np.array([image]))[0])
    else:
        res = np.array(model_ch.predict(np.array([image]))[0])

    zero_add = 0 ;

    if pos==0:
        res = res[:31]
    elif pos==1:
        res = res[31+10:65]
        zero_add = 31+10
    else:
        res = res[31:]
        zero_add = 31

    max_id = res.argmax()


    return res.max(),chars[max_id+zero_add],max_id+zero_add


识别效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4 算法优化和创新 (车牌倾斜校正)

在车牌识别系统中, 车牌字符能够正确分割的前提是车牌图像能够水平,以至于水平投影和垂直投影能够正常进行。如果车牌倾斜没有矫正,那么水平投影和垂直投影,甚至铆钉都无法正常处理。所以,当车辆信息中获取车牌的第一步,应该是检查倾斜角度,做倾斜矫正。

原车牌图像为(从车牌图像中,可以看到车牌有倾斜角度):

在这里插入图片描述

获取车牌在车辆中的粗略位置(可以用多种方法,这里暂不分析)

在这里插入图片描述

提取车牌整体图片数据, 根据第一步结果,提取出,车牌在辆大体位置信息。

关于车牌定位,我使用两部,第一步粗略定位,然后做一些预处理,比如倾斜矫正,然后第二部才是精确定位,只提取车牌的位置信息图像

在这里插入图片描述

利用HSV颜色空间转换,获取车牌背景蓝色区域位置,获取车牌粗略信息图像后,由于车牌背景颜色与周围颜色有很明显的区别,这里采用HSV颜色过滤的方法,过滤绿色背景图像

在这里插入图片描述

水平膨胀, 水平膨胀的目的,是为了边缘检测,只要求检测边缘,尽量除去字符信息,也可以降低hough变换的运算量

在这里插入图片描述

水平差分运算,相当于 边缘检测,经过上面的处理后,才进行边缘检测

在这里插入图片描述

这个时候就可以利用hough变换检测直线了。

由于hough变换运算量十分大,所以,尽量减少图像中的白点,来降低计算量,因此前面才做了这么多步骤。

请看下图的红线,就是检测出来的角度,为177度(Hough代码在下面)。

在这里插入图片描述

利用旋转算法,旋转刚才粗略提取的车牌位置,尽管旋转后的车牌有些锯齿,但是已经能够保证水平,就可以使用水平投影和垂直投影了

在这里插入图片描述

这是旋转后的车牌,有些锯齿出现,由于图像分辨率较低,就没有用差值运算。

精确提取车牌

在这里插入图片描述
正常分割字符

在这里插入图片描述

识别结果

在这里插入图片描述

5 GUI交互界面代码分享

界面代码展示

# 作者:丹成学长,q746876041
import tkinter as tk
from tkinter.filedialog import *
from tkinter import ttk
import img_function as predict
import cv2
from PIL import Image, ImageTk
import threading
import time
import img_math
import traceback
import debug
import config
from threading import Thread

class ThreadWithReturnValue(Thread):
    def __init__(self, group=None, target=None, name=None, args=(), kwargs=None, *, daemon=None):
        Thread.__init__(self, group, target, name, args, kwargs, daemon=daemon)
        self._return1 = None
        self._return2 = None
        self._return3 = None
    def run(self):
        if self._target is not None:
            self._return1,self._return2,self._return3 = self._target(*self._args, **self._kwargs)
    def join(self):
        Thread.join(self)
        return self._return1,self._return2,self._return3





class Surface(ttk.Frame):
    pic_path = ""
    viewhigh = 600
    viewwide = 600
    update_time = 0
    thread = None
    thread_run = False
    camera = None
    color_transform = {"green": ("绿牌", "#55FF55"), "yello": ("黄牌", "#FFFF00"), "blue": ("蓝牌", "#6666FF")}

    def __init__(self, win):
        ttk.Frame.__init__(self, win)
        frame_left = ttk.Frame(self)
        frame_right1 = ttk.Frame(self)
        frame_right2 = ttk.Frame(self)
        win.title("车牌识别")
        win.state("zoomed")
        self.pack(fill=tk.BOTH, expand=tk.YES, padx="10", pady="10")
        frame_left.pack(side=LEFT, expand=1, fill=BOTH)
        frame_right1.pack(side=TOP, expand=1, fill=tk.Y)
        frame_right2.pack(side=RIGHT, expand=0)
        ttk.Label(frame_left, text='原图:').pack(anchor="nw")
        ttk.Label(frame_right1, text='形状定位车牌位置:').grid(column=0, row=0, sticky=tk.W)

        from_pic_ctl = ttk.Button(frame_right2, text="来自图片", width=20, command=self.from_pic)
        from_vedio_ctl = ttk.Button(frame_right2, text="来自摄像头", width=20, command=self.from_vedio)
        from_img_pre = ttk.Button(frame_right2, text="查看形状预处理图像", width=20,command = self.show_img_pre)
        self.image_ctl = ttk.Label(frame_left)
        self.image_ctl.pack(anchor="nw")

        self.roi_ctl = ttk.Label(frame_right1)
        self.roi_ctl.grid(column=0, row=1, sticky=tk.W)
        ttk.Label(frame_right1, text='形状定位识别结果:').grid(column=0, row=2, sticky=tk.W)
        self.r_ctl = ttk.Label(frame_right1, text="",font=('Times','20'))
        self.r_ctl.grid(column=0, row=3, sticky=tk.W)
        self.color_ctl = ttk.Label(frame_right1, text="", width="20")
        self.color_ctl.grid(column=0, row=4, sticky=tk.W)
        from_vedio_ctl.pack(anchor="se", pady="5")
        from_pic_ctl.pack(anchor="se", pady="5")
        from_img_pre.pack(anchor="se", pady="5")

        ttk.Label(frame_right1, text='颜色定位车牌位置:').grid(column=0, row=5, sticky=tk.W)
        self.roi_ct2 = ttk.Label(frame_right1)
        self.roi_ct2.grid(column=0, row=6, sticky=tk.W)
        ttk.Label(frame_right1, text='颜色定位识别结果:').grid(column=0, row=7, sticky=tk.W)
        self.r_ct2 = ttk.Label(frame_right1, text="",font=('Times','20'))
        self.r_ct2.grid(column=0, row=8, sticky=tk.W)
        self.color_ct2 = ttk.Label(frame_right1, text="", width="20")
        self.color_ct2.grid(column=0, row=9, sticky=tk.W)

        self.predictor = predict.CardPredictor()
        self.predictor.train_svm()

    def get_imgtk(self, img_bgr):
        img = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
        im = Image.fromarray(img)
        imgtk = ImageTk.PhotoImage(image=im)
        wide = imgtk.width()
        high = imgtk.height()
        if wide > self.viewwide or high > self.viewhigh:
            wide_factor = self.viewwide / wide
            high_factor = self.viewhigh / high
            factor = min(wide_factor, high_factor)
            wide = int(wide * factor)
            if wide <= 0: wide = 1
            high = int(high * factor)
            if high <= 0: high = 1
            im = im.resize((wide, high), Image.ANTIALIAS)
            imgtk = ImageTk.PhotoImage(image=im)
        return imgtk



    def show_roi1(self, r, roi, color):
        if r:
            roi = cv2.cvtColor(roi, cv2.COLOR_BGR2RGB)
            roi = Image.fromarray(roi)
            self.imgtk_roi = ImageTk.PhotoImage(image=roi)
            self.roi_ctl.configure(image=self.imgtk_roi, state='enable')
            self.r_ctl.configure(text=str(r))
            self.update_time = time.time()
            try:
                c = self.color_transform[color]
                self.color_ctl.configure(text=c[0], background=c[1], state='enable')
            except:
                self.color_ctl.configure(state='disabled')
        elif self.update_time + 8 < time.time():
            self.roi_ctl.configure(state='disabled')
            self.r_ctl.configure(text="")
            self.color_ctl.configure(state='disabled')

    def show_roi2(self, r, roi, color):
        if r:
            roi = cv2.cvtColor(roi, cv2.COLOR_BGR2RGB)
            roi = Image.fromarray(roi)
            self.imgtk_roi = ImageTk.PhotoImage(image=roi)
            self.roi_ct2.configure(image=self.imgtk_roi, state='enable')
            self.r_ct2.configure(text=str(r))
            self.update_time = time.time()
            try:
                c = self.color_transform[color]
                self.color_ct2.configure(text=c[0], background=c[1], state='enable')
            except:
                self.color_ct2.configure(state='disabled')
        elif self.update_time + 8 < time.time():

            self.roi_ct2.configure(state='disabled')
            self.r_ct2.configure(text="")
            self.color_ct2.configure(state='disabled')

    def show_img_pre(self):

        filename = config.get_name()
        if filename.any() == True:
            debug.img_show(filename)


    def from_vedio(self):
        if self.thread_run:
            return
        if self.camera is None:
            self.camera = cv2.VideoCapture(0)
            if not self.camera.isOpened():
                mBox.showwarning('警告', '摄像头打开失败!')
                self.camera = None
                return
        self.thread = threading.Thread(target=self.vedio_thread, args=(self,))
        self.thread.setDaemon(True)
        self.thread.start()
        self.thread_run = True

    def from_pic(self):
        self.thread_run = False
        self.pic_path = askopenfilename(title="选择识别图片", filetypes=[("jpg图片", "*.jpg"), ("png图片", "*.png")])
        if self.pic_path:
            img_bgr = img_math.img_read(self.pic_path)
            first_img, oldimg = self.predictor.img_first_pre(img_bgr)
            self.imgtk = self.get_imgtk(img_bgr)
            self.image_ctl.configure(image=self.imgtk)
            th1 = ThreadWithReturnValue(target=self.predictor.img_color_contours,args=(first_img,oldimg))
            th2 = ThreadWithReturnValue(target=self.predictor.img_only_color,args=(oldimg,oldimg,first_img))
            th1.start()
            th2.start()
            r_c, roi_c, color_c = th1.join()
            r_color,roi_color,color_color = th2.join()
            print(r_c,r_color)

            self.show_roi2(r_color, roi_color, color_color)

            self.show_roi1(r_c, roi_c, color_c)


    @staticmethod
    def vedio_thread(self):
        self.thread_run = True
        predict_time = time.time()
        while self.thread_run:
            _, img_bgr = self.camera.read()
            self.imgtk = self.get_imgtk(img_bgr)
            self.image_ctl.configure(image=self.imgtk)
            if time.time() - predict_time > 2:
                r, roi, color = self.predictor(img_bgr)
                self.show_roi(r, roi, color)
                predict_time = time.time()
        print("run end")


def close_window():
    print("destroy")
    if surface.thread_run:
        surface.thread_run = False
        surface.thread.join(2.0)
    win.destroy()


if __name__ == '__main__':
    win = tk.Tk()

    surface = Surface(win)
    # close,退出输出destroy
    win.protocol('WM_DELETE_WINDOW', close_window)
    # 进入消息循环
    win.mainloop()

在这里插入图片描述

6 最后-毕设帮助

毕设帮助,开题指导,资料分享,疑问解答~

**毕设帮助, 选题指导, 项目分享: ** https://gitee.com/yaa-dc/warehouse-1/blob/master/python/README.md

目标识别是计算机视觉一个重要的研究领域,由此延伸出的车辆型号识别具有重 要的实际应用价值,特别是在当今交通状况复杂的大城市,智能交通系统成为发展趋 势,这离不开对车辆型号进行识别和分类的工作,本文围绕如何利用计算机视觉的方 法进行车辆型号的识别和分类展开了一系列研究: 本文对当前的目标识别和分类的特征和算法做了总结和归纳。分析比较了作为图 像特征描述常见的特征算子,总结归纳了他们的提取方法、特征性能以及相互之间的 关联。另外,介绍了在目标识别工作中常用的分类方法,阐述了他们各自的原理和工作 方法。研究了深度神经网络的理论依据,分析比较了深度神经网络不同的特征学习方 法,以及卷积神经网络的训练方法。分析比较不同特征学习方法的特点选取 k-means 作为本文使用的特征学习方法,利用卷积神经网络结构搭建深度学习模型,进行车辆 车型识别工作。 本文为了测试基于深度学习的车辆型号分类算法的性能在 30 个不同型号共 7158 张图片上进行实验;并在相同数据上利用改进了的 SIFT 特征匹配的算法进行对比实验; 进过实验测试,深度学习方法在进行车型分类的实验中取得 94%的正确率,并在与 SIFT 匹配实验结果对比后进一步证实:深度学习的方法能够应用在车辆型号识别领域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值