15、同构应用开发:从概念到实践

同构应用开发:从概念到实践

1. 模块对象与数据传递

模块对象并非全局对象,当需要将数据传递给特定模块且不暴露给其他模块时会用到它。例如,在一个条目中遍历项目列表(如图片库),为每个项目渲染一个图片模块,但使用不同的数据。可以通过模块对象直接将必要的数据传递给模块,而不是让模块使用索引作为键从条目中提取数据。

2. 转译视图模型

2.1 视图模型定义

由于 C# 是强类型语言,不能像 JavaScript 那样随意传递动态对象字面量。每个视图模型需要有严格定义的属性及其类型。为了让前端负责视图模型设计,决定用 JavaScript 编写视图模型,这样前端团队成员可以轻松测试模板渲染,而无需与 .NET 后端集成。

以下是一个典型的 JavaScript 视图模型示例,描述了一个 Bundle 并继承自另一个名为 Product 的模型:

var Bundle = function() {
    Product.apply(this);
    this.Title      = '';
    this.Director   = '';
    this.Synopsis   = '';
    this.Artwork    = new Image();
    this.Trailer    = new Video();
    this.Film       = new Video();
    this.Extras     = [new Extra()];
    this.IsNew      = false;
};
内容概要:本文围绕六自由度机械臂的人工神经网络(ANN)设计展开,重点研究了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程,并通过Matlab代码实现相关算法。文章结合理论推导与仿真实践,利用人工神经网络对复杂的非线性关系进行建模与逼近,提升机械臂运动控制的精度与效率。同时涵盖了路径规划中的RRT算法与B样条优化方法,形成从运动学到动力学再到轨迹优化的完整技术链条。; 适合人群:具备一定机器人学、自动控制理论基础,熟悉Matlab编程,从事智能控制、机器人控制、运动学六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)建模等相关方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握机械臂正/逆运动学的数学建模与ANN求解方法;②理解拉格朗日-欧拉法在动力学建模中的应用;③实现基于神经网络的动力学补偿与高精度轨迹跟踪控制;④结合RRT与B样条完成平滑路径规划与优化。; 阅读建议:建议读者结合Matlab代码动手实践,先从运动学建模入手,逐步深入动力学分析与神经网络训练,注重理论推导与仿真实验的结合,以充分理解机械臂控制系统的设计流程与优化策略。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值