问题描述
在一个2^k×2^k 个方格组成的棋盘中,恰有一个方格与其他方格不同,称该方格为一特殊方格,且称该棋盘为一特殊棋盘。在棋盘覆盖问题中,要用图示的4种不同形态的L型骨牌覆盖给定的特殊棋盘上除特殊方格以外的所有方格,且任何2个L型骨牌不得重叠覆盖。
解题思路
分析:当k>0时,将2k×2k棋盘分割为4个2^k-1×2^k-1 子棋盘(a)所示。特殊方格必位于4个较小子棋盘之一中,其余3个子棋盘中无特殊方格。为了将这3个无特殊方格的子棋盘转化为特殊棋盘,可以用一个L型骨牌覆盖这3个较小棋盘的会合处,如下图所示,从而将原问题转化为4个较小规模的棋盘覆盖问题。递归地使用这种分割,直至棋盘简化为棋盘1×1。
代码实现:
#include<iostream>
using namespace std;
int flag = 0;
int board[1001][1001];
void check(int tr, int tc, int dr, int dc, int size) {
int t = ++flag;
int s = size / 2;
if (size == 1) //出口
return;
if (dr < tr + s&&dc < tc + s) {
check(tr, tc, dr, dc, s);
}
else {
board[tr + s - 1][tc + s - 1] = t;
check(tr, tc, tr + s - 1, tc + s - 1, s);
}
if (dr<tr + s&&dc>=tc + s) {
check(tr , tc + s, dr, dc, s);
}
else {
board[tr + s - 1][tc + s] = t;
check(tr, tc + s, tr + s - 1, tc + s, s);
}
if (dr >= tr + s && dc < tc + s) {
check(tr + s, tc, dr, dc, s);
}
else {
board[tr + s][tc+s-1] = t;
check(tr + s, tc, tr + s, tc + s - 1, s);
}
if (dr >=tr + s && dc >= tc + s ) {
check(tr + s, tc + s, dr, dc, s);
}
else {
board[tr + s][tc + s] = t;
check(tr + s, tc + s, tr + s, tc + s, s);
}
}
int main() {
int size;
cin >> size;
int special_x, special_y;
cin >> special_x >> special_y;
check(0, 0, special_x, special_y, size);
for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {
printf("%d\t", board[i][j]);
//cout << board[i][j] << " ";
}
cout << endl;
}
return 0;
}
注:代码为查阅网上资料自己实现,没有备注,所以对代码有疑问的朋友或者有改进的意见,欢迎留言,我将会及时回复,相互学习。对了,多说一句,对于分治算法最重要的是思想,对于递归内部的具体实现不必深究。