核心思想:分冶、递归
思路:由于是一颗二叉搜索树,中序遍历为从小到大的结果,相当于已给定,其实转换为是否能根据中序和后序唯一确定一个二叉树。
根据后序遍历找到根,再找到中序遍历中此根节点的位置,从而可以将后序遍历分为左右两部分,判断左半边部分是否都小于根节点同时右节点都大于根节点,若是,则将左右两部分依次递归此过程,否则不是一个二叉搜索树的后序遍历结果。
代码:
/**************************************************
功能:判断一个给定的二叉搜索树的后序遍历是否正确
@athor: rly
@date: 2018-3-7
**************************************************/
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
bool isPostSeachTrue(int *post, int *in,int size)
{
if (size <= 0)
{
return true;
}
int root = post[size - 1];
int rootIndex;
for (rootIndex = 0; rootIndex < size; rootIndex++)
{
if (in[rootIndex] == root)
{
break;
}
} //找到根节点在中序遍历中的位置
int leftNum = rootIndex;
int rightNum = size - (leftNum + 1);
int i, j;
for (i = 0, j = leftNum + 1; i < leftNum,j < rightNum; i++, j++)
{
if (post[i] >= root || post[j] <= root)
{
return false;
} //若左边比根大或者右边比根小,则不是后序遍历结果
}
isPostSeachTrue(post, in, leftNum);
isPostSeachTrue(post + leftNum, in + leftNum + 1, rightNum);
return true;
}