每日算法三道之判定一个给定序列能否为二叉搜索树的后序遍历结果

本文介绍了一种通过后序与中序遍历来验证给定序列是否符合二叉搜索树特性的算法。利用递归思想,该算法首先找到根节点,然后判断左子树所有元素是否小于根节点,右子树所有元素是否大于根节点,并递归地对左右子树进行同样的检查。
摘要由CSDN通过智能技术生成

核心思想:分冶、递归
思路:由于是一颗二叉搜索树,中序遍历为从小到大的结果,相当于已给定,其实转换为是否能根据中序和后序唯一确定一个二叉树。
根据后序遍历找到根,再找到中序遍历中此根节点的位置,从而可以将后序遍历分为左右两部分,判断左半边部分是否都小于根节点同时右节点都大于根节点,若是,则将左右两部分依次递归此过程,否则不是一个二叉搜索树的后序遍历结果。
代码:

/**************************************************
功能:判断一个给定的二叉搜索树的后序遍历是否正确
@athor: rly
@date:  2018-3-7
**************************************************/


#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

bool isPostSeachTrue(int *post, int *in,int size)
{
    if (size <= 0)
    {
        return true;
    }
    int root = post[size - 1];
    int rootIndex;
    for (rootIndex = 0; rootIndex < size; rootIndex++)
    {
        if (in[rootIndex] == root)
        {
            break;
        }
    }                                   //找到根节点在中序遍历中的位置
    int leftNum = rootIndex;
    int rightNum = size - (leftNum + 1);

    int i, j;
    for (i = 0, j = leftNum + 1; i < leftNum,j < rightNum; i++, j++)
    {
        if (post[i] >= root || post[j] <= root)
        {
            return false;
        }                                //若左边比根大或者右边比根小,则不是后序遍历结果
    }

    isPostSeachTrue(post, in, leftNum);
    isPostSeachTrue(post + leftNum, in + leftNum + 1, rightNum);
    return true;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值