每日算法三道之判定一个给定序列能否为二叉搜索树的后序遍历结果

本文介绍了一种通过后序与中序遍历来验证给定序列是否符合二叉搜索树特性的算法。利用递归思想,该算法首先找到根节点,然后判断左子树所有元素是否小于根节点,右子树所有元素是否大于根节点,并递归地对左右子树进行同样的检查。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

核心思想:分冶、递归
思路:由于是一颗二叉搜索树,中序遍历为从小到大的结果,相当于已给定,其实转换为是否能根据中序和后序唯一确定一个二叉树。
根据后序遍历找到根,再找到中序遍历中此根节点的位置,从而可以将后序遍历分为左右两部分,判断左半边部分是否都小于根节点同时右节点都大于根节点,若是,则将左右两部分依次递归此过程,否则不是一个二叉搜索树的后序遍历结果。
代码:

/**************************************************
功能:判断一个给定的二叉搜索树的后序遍历是否正确
@athor: rly
@date:  2018-3-7
**************************************************/


#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

bool isPostSeachTrue(int *post, int *in,int size)
{
    if (size <= 0)
    {
        return true;
    }
    int root = post[size - 1];
    int rootIndex;
    for (rootIndex = 0; rootIndex < size; rootIndex++)
    {
        if (in[rootIndex] == root)
        {
            break;
        }
    }                                   //找到根节点在中序遍历中的位置
    int leftNum = rootIndex;
    int rightNum = size - (leftNum + 1);

    int i, j;
    for (i = 0, j = leftNum + 1; i < leftNum,j < rightNum; i++, j++)
    {
        if (post[i] >= root || post[j] <= root)
        {
            return false;
        }                                //若左边比根大或者右边比根小,则不是后序遍历结果
    }

    isPostSeachTrue(post, in, leftNum);
    isPostSeachTrue(post + leftNum, in + leftNum + 1, rightNum);
    return true;
}
### XDOJ平台上关于二叉排序树(BST)的题目及解法 #### 构建和验证二叉排序树 构建一个有效的二叉排序树意味着要遵循其定义:对于任意节点`n`,左子树中的所有键值小于`n.key`,而右子树中的所有键值大于等于`n.key`[^1]。 为了确保所创建的是合法的二叉排序树,在插入新结点时应比较待插入元素与当前根节点的关键字大小来决定向哪个方向继续查找位置;当遇到空指针时,则可以在此处添加新的叶子节点。此外,还需注意保持平衡以优化性能。 下面是一个简单的Python实现用于构建并检验给定序列能否形成有效BST: ```python class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right def is_valid_bst(root: TreeNode | None) -> bool: """判断一棵二叉树是否为有效的二叉搜索树""" def helper(node, lower=float('-inf'), upper=float('inf')): if not node: return True val = node.val if val <= lower or val >= upper: return False if (not helper(node.right, val, upper)) or \ (not helper(node.left, lower, val)): return False return True return helper(root) ``` 此函数通过递归方式遍历整棵树,并利用上下界参数控制各层允许的最大最小值范围,从而保证每一步都满足BST性质的要求。 针对XDOJ平台上的具体问题,通常会给出一系列操作指令或数据集让参赛者完成特定任务,比如查询、删除、修改等。解决这类竞赛题目的关键是理解题目描述,掌握基本算法原理以及灵活运用编程技巧解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值