图像处理
文章平均质量分 51
ro9er
这个作者很懒,什么都没留下…
展开
-
SIFT学习--特征点获取
通过前两节的工作,我们获得了尺度空间和DoG,这些量保证了尺度不变性,接下来我们就要获取特征点。获取特征点有两个部分:1. 定位DoG图像中的极大值点和极小值点特征点的定位是通过同一组内各个DoG相邻层之间进行比较来完成的。为了寻找尺度空间的极大值点或者极小值点,每一个采样点需要和它所有的相邻点进行比较,看该点是否比它的图像域和尺度域的相邻点大或者小。如下图所示:中间的监测原创 2012-03-28 21:56:07 · 1624 阅读 · 0 评论 -
SIFT学习--确定特征点的方向
为了保证特征点的方向不变性,我们必须确定特征点的方向。我们知道,确定一个点的梯度方向有如下公式:其中为(x,y)处的梯度大小而为该点的梯度方向。我们在以特征点为中心的邻域窗口中进行采样,并用直方图来统计邻域像素的梯度方向,梯度直方图的范围是0~360°,其中每10度一个柱,总共36个柱,直方图的峰值代表了该关键点处邻域梯度的主方向,即为关键点的方向,图示如下:原创 2012-03-28 22:44:23 · 4311 阅读 · 0 评论 -
SIFT学习--构建尺度空间
现实世界的对象只会在某些尺度上有意义。比如面前一棵树,如果在大的尺度上,树是有意义的,从另一个角度来说,树叶的信息被抛弃了。尺度空间就是从数字图像的角度模拟这些概念。如果要去除一些详细的信息,你必须确保你没有引入新的错误的细节,一个较好的做法是运用高斯核来进行模糊处理。所以要创建一个尺度空间,你必须拿到原始图像并且逐渐产生模糊处理后的图像。下面是一个例子:可以看到猫的头原创 2012-03-28 20:27:17 · 4631 阅读 · 1 评论 -
SIFT学习--近似LoG
上一节创建了尺度空间,现在我们用模糊处理过的图像来创建另一个图像集合(高斯差分 Difference of Gaussians,DoG)。高斯差分图片可以很好地查找出关键点。1. 高斯拉普拉斯算子高斯拉普拉斯算子是这样的,你拿到一个图像,对它进行模糊处理(高斯),然后你计算它每个像素的二阶导数(拉普拉斯),它能很好的表示出边界和角点,因为二阶导数对噪声非常敏感,所以模糊处理可以抚平噪声。原创 2012-03-28 21:23:53 · 2988 阅读 · 0 评论 -
SIFT学习--舍弃不合适的特征点
这里需要去除之前所获得的特征点中的低对比度的点和不稳定的边缘响应点。1.去除低对比度的点将之前算得到的亚像素精度点的值代入泰勒展开式,并只取前两项:其中,可以用来衡量特征点的对比度,如果小于一个经验值,那该特征点就被划归为一个不稳定特征点,就应该去除。这个经验值一般为0.032.去除不稳定的边缘响应点因为DoG算子会产生较强的边缘响应,所以应该去除一些不太稳原创 2012-03-28 22:26:15 · 3471 阅读 · 1 评论 -
SIFT学习--产生SIFT特征描述
至此,前面的所有工作都是为了现在这一步。。终于要写完了。。伤不起啊。。下面是一个SIFT描述子的示例,其中描述子由2*2*8维向量表征,也即是2*2个8方向直方图组成。左图的特征点由8*8个单元组成,每一个小格代表了特征点邻域所在的尺度空间的一个像素,箭头方向代表像素梯度和方向,箭头长度代表该像素的幅值。然后再4*4的窗口中计算8个方向的梯度直方图,绘制每个梯度方向的累积可形成一个种子点,如右原创 2012-03-29 01:16:00 · 2307 阅读 · 0 评论 -
SIFT算法学习
这篇文章参考了Utkarsh的博客,感觉他对SIFT的理解非常深刻,传送门在此:SIFT--UtkarshSIFT学习1. SIFT:ScaleInvariant Feature Transform不同图像间的特征匹配是计算机视觉中的一个焦点,如果图片是大致相似的(同样的尺寸,同样的方向),简单的角点检测(Harris)是可行的。但是如果图象有不同尺度和旋转,你就需要尺度不变的特原创 2012-03-28 20:05:44 · 1283 阅读 · 0 评论 -
混合高斯模型学习
刚刚看了下原论文。。发现确实。。比网上找的所有资料都要详细和准确。。不过还是感谢其他的中文作者。。首先作者介绍了混合高斯模型是将单一像素的值建模成一组高斯分布的混合,在这一组高斯分布中决定了哪些高斯分布对应了背景。然后说了下混合高斯模型能够在处理光线变化、重复移动对象、慢速移动对象和混乱场景的追踪方面有很好的鲁棒性。然后提到了该模型中有两个重要参数:学习参数α和决定背景的比例数据 T。原创 2012-04-18 22:32:34 · 6296 阅读 · 5 评论