逆元的线性递推求解方法及阶乘逆元

线性递推

我们已经学过了利用扩展欧几里得和费马小定理求解乘法逆元的方法,但是对于这道题,这两种方法都失效,那么我们需要找到一种线性的算法来求解,时间复杂度才合格,如果对于逆元概念存在问题可以看一下第一个链接

  • 可以这样考虑,设
    t = ⌊ p i ⌋ t=\lfloor \frac{p}{i}\rfloor t=ip k = p % i k=p \% i k=p%i
    则有
    p = i × t + k p=i\times t+k p=i×t+k
    也就是
    i × t + k ≡ 0 ( m o d p ) i\times t+k\equiv 0\pmod p i×t+k0(modp)
    移项
    i × t ≡ − k ( m o d p ) i\times t\equiv-k\pmod p i×tk(modp)
    i ′ i' i i i i对于模 p p p的逆元, k ′ k' k k k k对于模 p p p的逆元,两侧分别乘上 i ′ k ′ i'k' ik,得
    i × t × i ′ × k ′ ≡ − k × i ′ × k ′ ( m o d p ) i\times t \times i' \times k' \equiv-k\times i'\times k'\pmod p i×t×i×kk×i×k(modp)
    由于 i × i ′ ( m o d p ) i\times i' \pmod p i×i(modp)为1, k × k ′ ( m o d p ) k\times k' \pmod p k×k(modp)为1,所以
    t × k ′ ≡ − i ′ ( m o d p ) t\times k'\equiv -i'\pmod p t×ki(modp)
    如果用数组inv表示逆元(inverse element),那么上式等价于
    t × i n v [ k ] ≡ − i n v [ i ] ( m o d p ) t\times inv[k]\equiv -inv[i]\pmod p t×inv[k]inv[i](modp)
    将k和t代入,可得
    ⌊ p i ⌋ × i n v [ p % i ] ≡ − i n v [ i ] ( m o d p ) \lfloor\frac{p}{i}\rfloor \times inv[p\%i]\equiv -inv[i]\pmod p ip×inv[p%i]inv[i](modp)
    也就是
    i n v [ i ] = − ⌊ p i ⌋ × i n v [ p % i ] % p inv[i]=-\lfloor\frac{p}{i}\rfloor\times inv[p\%i]\%p inv[i]=ip×inv[p%i]%p
    负数化正,得到
    i n v [ i ] = ( p − ⌊ p i ⌋ × i n v [ p % i ] % p ) % p inv[i]=(p-\lfloor\frac{p}{i}\rfloor\times inv[p\%i]\%p)\%p inv[i]=(pip×inv[p%i]%p)%p
    这就是逆元的递推式,只要得到了第一个元素的逆元,就可以线性的推出第n个数的逆元
    程序如下
#include <iostream>
using namespace std;
typedef long long ll;
const int MAXN = 3e7;
ll inv[MAXN];
int main(){
    int n, p;
    cin >> n >> p;
    inv[1] = 1;
    for(int i=2;i<=n;i++){
        inv[i] = p - (p / i * inv[p % i] % p) % p;
    }
    for(int i=1;i<=n;i++){
        cout << inv[i] << "\n";
    }
    return 0;
}

阶乘逆元

  • 更新于2021.11.22
  • 这个问题应该常见于求组合数上,比如数的范围是 n n n,怎么高效的求出 [ 1 , n ] [1,n] [1,n]中每个数的阶乘的逆元呢?
  • 我们知道 1 ( n + 1 ) ! × ( n + 1 ) = 1 n ! \frac{1}{(n+1)!}\times(n+1)=\frac{1}{n!} (n+1)!1×(n+1)=n!1,根据逆元的定义,如果设 i n v [ i ] inv[i] inv[i]表示 i ! i! i!的逆元,那么有 i n v [ n + 1 ] × ( n + 1 ) = i n v [ n ] inv[n+1]\times(n+1)=inv[n] inv[n+1]×(n+1)=inv[n]
  • 所以一般我们都会先求出 i n v [ n ] inv[n] inv[n]然后再线性求出其余的 i ! i! i!的逆元
    for(int i=n-1;i>=0;i--){
        inv[i] = inv[i + 1] * (i + 1) % MOD;
    }
  • 19
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Clarence Liu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值