DP练习 洛谷 P1220 关路灯

https://www.luogu.com.cn/problem/P1220

  • 给你 n n n个路灯的位置和它们每秒消耗的功率,老张从某个路灯的位置出发,每次向左或者向右走,经过路灯就会关掉路灯,问路灯消耗功率的最小总量
  • 注意并记住此题的方程设法, n n n的范围很小,考虑 n 2 n^2 n2 d p dp dp,我们 d p [ i ] [ j ] [ 0 ] dp[i][j][0] dp[i][j][0]表示关掉 [ i , j ] [i,j] [i,j]之间所有路灯且最终停留在 i i i处的路灯消耗最小功率; d p [ i ] [ j ] [ 1 ] dp[i][j][1] dp[i][j][1]表示关掉 [ i , j ] [i,j] [i,j]之间所有路灯且最终停留在 j j j处的路灯消耗最小功率,那么 a [ i ] , b [ i ] a[i],b[i] a[i],b[i]分别表示路灯位置和每秒钟消耗的功率, p [ i , j ] p[i,j] p[i,j]表示关掉 [ i , j ] [i,j] [i,j]之间所有路灯其他路灯每秒钟消耗的功率,那么有 d p [ i ] [ j ] [ 0 ] = m i n ( d p [ i + 1 ] [ j ] [ 0 ] + ( a [ i + 1 ] − a [ i ] ) × p [ i + 1 , j ] , d p [ i + 1 ] [ j ] [ 1 ] + ( a [ j ] − a [ i ] ) × p [ i + 1 , j ] dp[i][j][0]=min(dp[i+1][j][0]+(a[i+1]-a[i])\times p[i+1,j],dp[i+1][j][1]+(a[j]-a[i])\times p[i+1,j] dp[i][j][0]=min(dp[i+1][j][0]+(a[i+1]a[i])×p[i+1,j],dp[i+1][j][1]+(a[j]a[i])×p[i+1,j] d p [ i ] [ j ] [ 1 ] = m i n ( d p [ i ] [ j − 1 ] [ 1 ] + ( a [ j ] − a [ j − 1 ] ) × p [ i , j − 1 ] , d p [ i ] [ j − 1 ] [ 0 ] + ( a [ j ] − a [ i ] ) × p [ i , j − 1 ] ) dp[i][j][1]=min(dp[i][j-1][1]+(a[j]-a[j-1])\times p[i,j-1],dp[i][j-1][0]+(a[j]-a[i])\times p[i,j-1]) dp[i][j][1]=min(dp[i][j1][1]+(a[j]a[j1])×p[i,j1],dp[i][j1][0]+(a[j]a[i])×p[i,j1])
  • 注意状态转移的初始状态,全部设为无穷大,因为路灯瞬间关闭,所以有 d p [ c ] [ c ] [ 0 ] = d p [ c ] [ c ] [ 1 ] = 0 dp[c][c][0]=dp[c][c][1]=0 dp[c][c][0]=dp[c][c][1]=0,注意因为起始位置为 i = c i=c i=c,所以我们循环应该从 c c c开始
#include <bits/stdc++.h>

using namespace std;

typedef long long ll;
const int N = 60;
int a[N], b[N];
int p[N][N];
int dp[N][N][2];
const int INF = 0x3f3f3f3f;
int main(){
  ios::sync_with_stdio(false);
  cin.tie(0);
  cout.tie(0);
  int n, c;
  cin >> n >> c;
  int sum = 0;
  for(int i=1;i<=n;i++){
    cin >> a[i] >> b[i];
    b[i] += b[i - 1];
  }
  for(int i=1;i<=n;i++){
    for(int j=i;j<=n;j++){
      p[i][j] = b[n] - (b[j] - b[i - 1]);
      dp[i][j][0] = dp[i][j][1] = INF;// 初始化为无穷大, 注意只是需要用到的部分初始化
    }
  }
  dp[c][c][0] = dp[c][c][1] = 0;
  for(int i=c;i>=1;i--){// 循环的控制需要格外注意
    for(int j=i+1;j<=n;j++){// 必须从i+1开始
      dp[i][j][0] = min(dp[i+1][j][0] + (a[i+1]-a[i]) * p[i+1][j],dp[i+1][j][1]+(a[j]-a[i]) * p[i+1][j]);
      dp[i][j][1] = min(dp[i][j-1][1] + (a[j]-a[j-1]) * p[i][j-1],dp[i][j-1][0]+(a[j]-a[i]) * p[i][j-1]);
    }
  }
  cout << min(dp[1][n][0], dp[1][n][1]);// 取最终位置在1或者n的最小值
  return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Clarence Liu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值