花1K内存实现高效I/O的RandomAccessFile类
JAVA的文件随机存取类(RandomAccessFile)的I/O效率较低。通过分析其中原因,提出解决方案。逐步展示如何创建具备缓存读写能力的文件随机存取类,并进行了优化。通过与其它文件访问类的性能对比,证明了其实用价值。
主体:
目前最流行的J2SDK版本是1.3系列。使用该版本的开发人员需文件随机存取,就得使用RandomAccessFile类。其I/O性能较之其它常用开发语言的同类性能差距甚远,严重影响程序的运行效率。
开发人员迫切需要提高效率,下面分析RandomAccessFile等文件类的源代码,找出其中的症结所在,并加以改进优化,创建一个"性/价比"俱佳的随机文件访问类BufferedRandomAccessFile。
在改进之前先做一个基本测试:逐字节COPY一个12兆的文件(这里牵涉到读和写)。
读 | 写 | 耗用时间(秒) |
---|---|---|
RandomAccessFile | RandomAccessFile | 95.848 |
BufferedInputStream + DataInputStream | BufferedOutputStream + DataOutputStream | 2.935 |
我们可以看到两者差距约32倍,RandomAccessFile也太慢了。先看看两者关键部分的源代码,对比分析,找出原因。
1.1.[RandomAccessFile]
public class RandomAccessFile implements DataOutput, DataInput { public final byte readByte() throws IOException { int ch = this.read(); if (ch < 0) throw new EOFException(); return (byte)(ch); } public native int read() throws IOException; public final void writeByte(int v) throws IOException { write(v); } public native void write(int b) throws IOException; }
可见,RandomAccessFile每读/写一个字节就需对磁盘进行一次I/O操作。
1.2.[BufferedInputStream]
public class BufferedInputStream extends FilterInputStream { private static int defaultBufferSize = 2048; protected byte buf[]; // 建立读缓存区 public BufferedInputStream(InputStream in, int size) { super(in); if (size <= 0) { throw new IllegalArgumentException("Buffer size <= 0"); } buf = new byte[size]; } public synchronized int read() throws IOException { ensureOpen(); if (pos >= count) { fill(); if (pos >= count) return -1; } return buf[pos++] & 0xff; // 直接从BUF[]中读取 } private void fill() throws IOException { if (markpos < 0) pos = 0; /* no mark: throw away the buffer */ else if (pos >= buf.length) /* no room left in buffer */ if (markpos > 0) { /* can throw away early part of the buffer */ int sz = pos - markpos; System.arraycopy(buf, markpos, buf, 0, sz); pos = sz; markpos = 0; } else if (buf.length >= marklimit) { markpos = -1; /* buffer got too big, invalidate mark */ pos = 0; /* drop buffer contents */ } else { /* grow buffer */ int nsz = pos * 2; if (nsz > marklimit) nsz = marklimit; byte nbuf[] = new byte[nsz]; System.arraycopy(buf, 0, nbuf, 0, pos); buf = nbuf; } count = pos; int n = in.read(buf, pos, buf.length - pos); if (n > 0) count = n + pos; } }
1.3.[BufferedOutputStream]
public class BufferedOutputStream extends FilterOutputStream { protected byte buf[]; // 建立写缓存区 public BufferedOutputStream(OutputStream out, int size) { super(out); if (size <= 0) { throw new IllegalArgumentException("Buffer size <= 0"); } buf = new byte[size]; } public synchronized void write(int b) throws IOException { if (count >= buf.length) { flushBuffer(); } buf[count++] = (byte)b; // 直接从BUF[]中读取 } private void flushBuffer() throws IOException { if (count > 0) { out.write(buf, 0, count); count = 0; } } }
可见,Buffered I/O putStream每读/写一个字节,若要操作的数据在BUF中,就直接对内存的buf[]进行读/写操作;否则从磁盘相应位置填充buf[],再直接对内存的buf[]进行读/写操作,绝大部分的读/写操作是对内存buf[]的操作。
1.3.小结
内存存取时间单位是纳秒级(10E-9),磁盘存取时间单位是毫秒级(10E-3), 同样操作一次的开销,内存比磁盘快了百万倍。理论上可以预见,即使对内存操作上万次,花费的时间也远少对于磁盘一次I/O的开销。 显然后者是通过增加位于内存的BUF存取,减少磁盘I/O的开销,提高存取效率的,当然这样也增加了BUF控制部分的开销。从实际应用来看,存取效率提高了32倍。
根据1.3得出的结论,现试着对RandomAccessFile类也加上缓冲读写机制。
随机访问类与顺序类不同,前者是通过实现DataInput/DataOutput接口创建的,而后者是扩展FilterInputStream/FilterOutputStream创建的,不能直接照搬。
2.1.开辟缓冲区BUF[默认:1024字节],用作读/写的共用缓冲区。
2.2.先实现读缓冲。
读缓冲逻辑的基本原理:
A 欲读文件POS位置的一个字节。
B 查BUF中是否存在?若有,直接从BUF中读取,并返回该字符BYTE。
C 若没有,则BUF重新定位到该POS所在的位置并把该位置附近的BUFSIZE的字节的文件内容填充BUFFER,返回B。
以下给出关键部分代码及其说明:
public class BufferedRandomAccessFile extends RandomAccessFile { // byte read(long pos):读取当前文件POS位置所在的字节 // bufstartpos、bufendpos代表BUF映射在当前文件的首/尾偏移地址。 // curpos指当前类文件指针的偏移地址。 public byte read(long pos) throws IOException { if (pos < this.bufstartpos || pos > this.bufendpos ) { this.flushbuf(); this.seek(pos); if ((pos < this.bufstartpos) || (pos > this.bufendpos)) throw new IOException(); } this.curpos = pos; return this.buf[(int)(pos - this.bufstartpos)]; } // void flushbuf():bufdirty为真,把buf[]中尚未写入磁盘的数据,写入磁盘。 private void flushbuf() throws IOException { if (this.bufdirty == true) { if (super.getFilePointer() != this.bufstartpos) { super.seek(this.bufstartpos); } super.write(this.buf, 0, this.bufusedsize); this.bufdirty = false; } } // void seek(long pos):移动文件指针到pos位置,并把buf[]映射填充至POS 所在的文件块。 public void seek(long pos) throws IOException { if ((pos < this.bufstartpos) || (pos > this.bufendpos)) { // seek pos not in buf this.flushbuf(); if ((pos >= 0) && (pos <= this.fileendpos) && (this.fileendpos != 0)) { // seek pos in file (file length > 0) this.bufstartpos = pos * bufbitlen / bufbitlen; this.bufusedsize = this.fillbuf(); } else if (((pos == 0) && (this.fileendpos == 0)) || (pos == this.fileendpos + 1)) { // seek pos is append pos this.bufstartpos = pos; this.bufusedsize = 0; } this.bufendpos = this.bufstartpos + this.bufsize - 1; } this.curpos = pos; } // int fillbuf():根据bufstartpos,填充buf[]。 private int fillbuf() throws IOException { super.seek(this.bufstartpos); this.bufdirty = false; return super.read(this.buf); } }
至此缓冲读基本实现,逐字节COPY一个12兆的文件(这里牵涉到读和写,用BufferedRandomAccessFile试一下读的速度):
读 | 写 | 耗用时间(秒) |
---|---|---|
RandomAccessFile | RandomAccessFile | 95.848 |
BufferedRandomAccessFile | BufferedOutputStream + DataOutputStream | 2.813 |
BufferedInputStream + DataInputStream | BufferedOutputStream + DataOutputStream | 2.935 |
可见速度显著提高,与BufferedInputStream+DataInputStream不相上下。
2.3.实现写缓冲。
写缓冲逻辑的基本原理:
A欲写文件POS位置的一个字节。
B 查BUF中是否有该映射?若有,直接向BUF中写入,并返回true。
C若没有,则BUF重新定位到该POS所在的位置,并把该位置附近的 BUFSIZE字节的文件内容填充BUFFER,返回B。
下面给出关键部分代码及其说明:
// boolean write(byte bw, long pos):向当前文件POS位置写入字节BW。 // 根据POS的不同及BUF的位置:存在修改、追加、BUF中、BUF外等情 况。在逻辑判断时,把最可能出现的情况,最先判断,这样可提高速度。 // fileendpos:指示当前文件的尾偏移地址,主要考虑到追加因素 public boolean write(byte bw, long pos) throws IOException { if ((pos >= this.bufstartpos) && (pos <= this.bufendpos)) { // write pos in buf this.buf[(int)(pos - this.bufstartpos)] = bw; this.bufdirty = true; if (pos == this.fileendpos + 1) { // write pos is append pos this.fileendpos++; this.bufusedsize++; } } else { // write pos not in buf this.seek(pos); if ((pos >= 0) && (pos <= this.fileendpos) && (this.fileendpos != 0)) { // write pos is modify file this.buf[(int)(pos - this.bufstartpos)] = bw; } else if (((pos == 0) && (this.fileendpos == 0)) || (pos == this.fileendpos + 1)) { // write pos is append pos this.buf[0] = bw; this.fileendpos++; this.bufusedsize = 1; } else { throw new IndexOutOfBoundsException(); } this.bufdirty = true; } this.curpos = pos; return true; }
至此缓冲写基本实现,逐字节COPY一个12兆的文件,(这里牵涉到读和写,结合缓冲读,用BufferedRandomAccessFile试一下读/写的速度):
读 | 写 | 耗用时间(秒) |
---|---|---|
RandomAccessFile | RandomAccessFile | 95.848 |
BufferedInputStream + DataInputStream | BufferedOutputStream + DataOutputStream | 2.935 |
BufferedRandomAccessFile | BufferedOutputStream + DataOutputStream | 2.813 |
BufferedRandomAccessFile | BufferedRandomAccessFile | 2.453 |
可见综合读/写速度已超越BufferedInput/OutputStream+DataInput/OutputStream。
优化BufferedRandomAccessFile。
优化原则:
- 调用频繁的语句最需要优化,且优化的效果最明显。
- 多重嵌套逻辑判断时,最可能出现的判断,应放在最外层。
- 减少不必要的NEW。
这里举一典型的例子:
public void seek(long pos) throws IOException { ... this.bufstartpos = pos * bufbitlen / bufbitlen; // bufbitlen指buf[]的位长,例:若bufsize=1024,则bufbitlen=10。 ... }
seek函数使用在各函数中,调用非常频繁,上面加重的这行语句根据pos和bufsize确定buf[]对应当前文件的映射位置,用"*"、"/"确定,显然不是一个好方法。
优化一:this.bufstartpos = (pos << bufbitlen) >> bufbitlen;
优化二:this.bufstartpos = pos & bufmask; // this.bufmask = ~((long)this.bufsize - 1);
两者效率都比原来好,但后者显然更好,因为前者需要两次移位运算、后者只需一次逻辑与运算(bufmask可以预先得出)。
至此优化基本实现,逐字节COPY一个12兆的文件,(这里牵涉到读和写,结合缓冲读,用优化后BufferedRandomAccessFile试一下读/写的速度):
读 | 写 | 耗用时间(秒) |
---|---|---|
RandomAccessFile | RandomAccessFile | 95.848 |
BufferedInputStream + DataInputStream | BufferedOutputStream + DataOutputStream | 2.935 |
BufferedRandomAccessFile | BufferedOutputStream + DataOutputStream | 2.813 |
BufferedRandomAccessFile | BufferedRandomAccessFile | 2.453 |
BufferedRandomAccessFile优 | BufferedRandomAccessFile优 | 2.197 |
可见优化尽管不明显,还是比未优化前快了一些,也许这种效果在老式机上会更明显。
以上比较的是顺序存取,即使是随机存取,在绝大多数情况下也不止一个BYTE,所以缓冲机制依然有效。而一般的顺序存取类要实现随机存取就不怎么容易了。
需要完善的地方
提供文件追加功能:
public boolean append(byte bw) throws IOException { return this.write(bw, this.fileendpos + 1); }
提供文件当前位置修改功能:
public boolean write(byte bw) throws IOException { return this.write(bw, this.curpos); }
返回文件长度(由于BUF读写的原因,与原来的RandomAccessFile类有所不同):
public long length() throws IOException { return this.max(this.fileendpos + 1, this.initfilelen); }
返回文件当前指针(由于是通过BUF读写的原因,与原来的RandomAccessFile类有所不同):
public long getFilePointer() throws IOException { return this.curpos; }
提供对当前位置的多个字节的缓冲写功能:
public void write(byte b[], int off, int len) throws IOException { long writeendpos = this.curpos + len - 1; if (writeendpos <= this.bufendpos) { // b[] in cur buf System.arraycopy(b, off, this.buf, (int)(this.curpos - this.bufstartpos), len); this.bufdirty = true; this.bufusedsize = (int)(writeendpos - this.bufstartpos + 1); } else { // b[] not in cur buf super.seek(this.curpos); super.write(b, off, len); } if (writeendpos > this.fileendpos) this.fileendpos = writeendpos; this.seek(writeendpos+1); } public void write(byte b[]) throws IOException { this.write(b, 0, b.length); }
提供对当前位置的多个字节的缓冲读功能:
public int read(byte b[], int off, int len) throws IOException { long readendpos = this.curpos + len - 1; if (readendpos <= this.bufendpos && readendpos <= this.fileendpos ) { // read in buf System.arraycopy(this.buf, (int)(this.curpos - this.bufstartpos), b, off, len); } else { // read b[] size > buf[] if (readendpos > this.fileendpos) { // read b[] part in file len = (int)(this.length() - this.curpos + 1); } super.seek(this.curpos); len = super.read(b, off, len); readendpos = this.curpos + len - 1; } this.seek(readendpos + 1); return len; } public int read(byte b[]) throws IOException { return this.read(b, 0, b.length); } public void setLength(long newLength) throws IOException { if (newLength > 0) { this.fileendpos = newLength - 1; } else { this.fileendpos = 0; } super.setLength(newLength); } public void close() throws IOException { this.flushbuf(); super.close(); }
至此完善工作基本完成,试一下新增的多字节读/写功能,通过同时读/写1024个字节,来COPY一个12兆的文件,(这里牵涉到读和写,用完善后BufferedRandomAccessFile试一下读/写的速度):
读 | 写 | 耗用时间(秒) |
---|---|---|
RandomAccessFile | RandomAccessFile | 95.848 |
BufferedInputStream + DataInputStream | BufferedOutputStream + DataOutputStream | 2.935 |
BufferedRandomAccessFile | BufferedOutputStream + DataOutputStream | 2.813 |
BufferedRandomAccessFile | BufferedRandomAccessFile | 2.453 |
BufferedRandomAccessFile优 | BufferedRandomAccessFile优 | 2.197 |
BufferedRandomAccessFile完 | BufferedRandomAccessFile完 | 0.401 |
与JDK1.4新类MappedByteBuffer+RandomAccessFile的对比?
JDK1.4提供了NIO类 ,其中MappedByteBuffer类用于映射缓冲,也可以映射随机文件访问,可见JAVA设计者也看到了RandomAccessFile的问题,并加以改进。怎么通过MappedByteBuffer+RandomAccessFile拷贝文件呢?下面就是测试程序的主要部分:
RandomAccessFile rafi = new RandomAccessFile(SrcFile, "r"); RandomAccessFile rafo = new RandomAccessFile(DesFile, "rw"); FileChannel fci = rafi.getChannel(); FileChannel fco = rafo.getChannel(); long size = fci.size(); MappedByteBuffer mbbi = fci.map(FileChannel.MapMode.READ_ONLY, 0, size); MappedByteBuffer mbbo = fco.map(FileChannel.MapMode.READ_WRITE, 0, size); long start = System.currentTimeMillis(); for (int i = 0; i < size; i++) { byte b = mbbi.get(i); mbbo.put(i, b); } fcin.close(); fcout.close(); rafi.close(); rafo.close(); System.out.println("Spend: "+(double)(System.currentTimeMillis()-start) / 1000 + "s");
试一下JDK1.4的映射缓冲读/写功能,逐字节COPY一个12兆的文件,(这里牵涉到读和写):
读 | 写 | 耗用时间(秒) |
---|---|---|
RandomAccessFile | RandomAccessFile | 95.848 |
BufferedInputStream + DataInputStream | BufferedOutputStream + DataOutputStream | 2.935 |
BufferedRandomAccessFile | BufferedOutputStream + DataOutputStream | 2.813 |
BufferedRandomAccessFile | BufferedRandomAccessFile | 2.453 |
BufferedRandomAccessFile优 | BufferedRandomAccessFile优 | 2.197 |
BufferedRandomAccessFile完 | BufferedRandomAccessFile完 | 0.401 |
MappedByteBuffer+ RandomAccessFile | MappedByteBuffer+ RandomAccessFile | 1.209 |
确实不错,看来JDK1.4比1.3有了极大的进步。如果以后采用1.4版本开发软件时,需要对文件进行随机访问,建议采用MappedByteBuffer+RandomAccessFile的方式。但鉴于目前采用JDK1.3及以前的版本开发的程序占绝大多数的实际情况,如果您开发的JAVA程序使用了RandomAccessFile类来随机访问文件,并因其性能不佳,而担心遭用户诟病,请试用本文所提供的BufferedRandomAccessFile类,不必推翻重写,只需IMPORT 本类,把所有的RandomAccessFile改为BufferedRandomAccessFile,您的程序的性能将得到极大的提升,您所要做的就这么简单。
未来的考虑
读者可在此基础上建立多页缓存及缓存淘汰机制,以应付对随机访问强度大的应用。