Durbin-Watson 检验,又称 DW 检验,是用来检验回归分析中残差的一阶自相关性的(尤其针对时间序列数据)。
假设残差为
e
t
e_t
et,各残差的相关性方程用
e
t
=
ρ
e
t
−
1
+
v
t
e_t=\rho e_{t-1}+v_t
et=ρet−1+vt,检验的原假设为:
ρ
=
0
\rho=0
ρ=0,备选假设:
ρ
≠
0
\rho\neq 0
ρ=0,检验统计量:
d
=
∑
t
=
2
T
(
e
t
−
e
t
−
1
)
2
∑
t
=
1
T
e
t
2
d=\frac{\sum^{T}_{t=2}(e_t-e_{t-1})^2}{\sum^{T}_{t=1}e_t^2}
d=∑t=1Tet2∑t=2T(et−et−1)2
由于 d d d 近似等于 2 ( 1 − ρ ) 2(1-\rho) 2(1−ρ) (这个证明过程需要将分子的式子展开,然后利用到 e t e_t et 与 e t − 1 e_{t-1} et−1 的自相关系数),所以该统计量值越接近 2 越好,一般在 1~3 之间说明没问题,小于 1 这说明残差存在自相关性(有临界值表可以查)。
若没有通过 DW 检验,则需要修改模型或对数据进行处理。
参考资料:
https://wenku.baidu.com/view/34a5119881d049649b6648d7c1c708a1284a0a83.html
https://en.wikipedia.org/wiki/Durbin%E2%80%93Watson_statistic