统计模型评价准则 AIC

统计模型评价时,经常见到一个准则 AIC, 全称是 Akaike information criterion,是以日本的统计学家 Akaike 命名的,它的计算公式为:

A I C = 2 k − ln ⁡ ( L ^ ) AIC=2k-\ln(\hat{L}) AIC=2kln(L^)

其中, k k k 是模型中的待估参数数量, L ^ \hat{L} L^ 是该模型极大似然估计的最大值。

AIC 值越小,说明该统计模型损失的信息越少。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心态与习惯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值