测度论中的概率空间,可测空间

随机规划理论、随机过程中经常见到概率空间的使用,总结一下。

1. 概率空间

概率空间(probability space)是测度论的基本概念,测度论将传统积分进行了进一步推广。传统的积分在一个区间上进行,而测度论将积分推广到可以在一个集合中进行。

概率空间 ( Ω , F , P ) (\Omega, \mathcal{F}, P) (Ω,F,P) 表示一个随机过程,它包括 3 部分:

  • Ω \Omega Ω:样本空间(sample space). 一次随机试验中可能发生的结果。
  • F \mathcal{F} F:事件空间(event space). 是指样本空间的所有可能子集(包括空集以及 Ω \Omega Ω 本身)。
  • P P P:概率函数. 为事件空间中的每一个事件赋予一个概率,概率在 0 到 1 之间。

例如,掷一次硬币,

  • Ω \Omega Ω:样本空间 {正面,反面}
  • F \mathcal{F} F:事件空间 {空集,正面,反面,{正面,反面}}。
  • P P P:概率函数,上述事件空间中每个事件的概率分别为 0, 0.5, 0.5, 1

2. σ \sigma σ 代数

事件空间 F \mathcal{F} F 必须是一个 σ \sigma σ 代数,即满足下列条件:

  • Ω ∈ F \Omega\in\mathcal{F} ΩF
  • 如果集合 A A A F \mathcal{F} F 中,则它的补集也在 F \mathcal{F} F 中,即 A C ∈ F A^C\in\mathcal{F} ACF
  • 如果可数个集合 A 1 A_1 A1, A 2 A_2 A2, … \dots , A n A_n An F \mathcal{F} F 中,则 A 1 A_1 A1, A 2 A_2 A2, … \dots , A n A_n An 的并集也在 F \mathcal{F} F

( Ω , F ) (\Omega, \mathcal{F}) (Ω,F) 合在一起称作可测空间。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心态与习惯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值