关于组合数(二项系数)的一个递推公式

对于组合数,一些英文资料里也称为二项系数(二项分布的系数)
( n k ) = C n k = n ! k ! ( n − k ) ! \binom{n}{k}=C_n^k=\frac{n!}{k!(n-k)!} (kn)=Cnk=k!(nk)!n!

有一个递推公式:
( n k ) = ( n − 1 k − 1 ) + ( n − 1 k ) \binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} (kn)=(k1n1)+(kn1)

即:

C n k = C n − 1 k − 1 + C n − 1 k C_n^k=C_{n-1}^{k-1}+C_{n-1}^k Cnk=Cn1k1+Cn1k

这个非常容易证明,将表达式展开为阶乘计算即可。最近听到一位教授提起,发下自己忘了,于是写篇博客记录下。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心态与习惯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值