对于组合数,一些英文资料里也称为二项系数(二项分布的系数)
(
n
k
)
=
C
n
k
=
n
!
k
!
(
n
−
k
)
!
\binom{n}{k}=C_n^k=\frac{n!}{k!(n-k)!}
(kn)=Cnk=k!(n−k)!n!
有一个递推公式:
(
n
k
)
=
(
n
−
1
k
−
1
)
+
(
n
−
1
k
)
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
(kn)=(k−1n−1)+(kn−1)
即:
C n k = C n − 1 k − 1 + C n − 1 k C_n^k=C_{n-1}^{k-1}+C_{n-1}^k Cnk=Cn−1k−1+Cn−1k
这个非常容易证明,将表达式展开为阶乘计算即可。最近听到一位教授提起,发下自己忘了,于是写篇博客记录下。