二项式系数 & 递推关系初步

本文探讨了二项式系数的Pascal公式、恒等式、多项式定理以及牛顿二项式定理。此外,还介绍了递推关系的基础知识,包括斐波那契数列部分和、线性递推关系及其解法,特别是特征方程和特解的寻找过程。
摘要由CSDN通过智能技术生成

二项式系数

1.       Pascal公式:C( n, k ) = C( n-1, k ) + C( n-1, k-1)

2.       一些恒等式

a.       k*C( n, k ) = n*C(n-1. k-1 )

b.      C(n, 0) – C(n, 1) + C(n, 2) - … + (-1)nC(n, n) = 0  (n>=1)

c.       1*C(n, 1) + 2*C(n, 2) + 3*C(n, 3) + … + n*C(n, n) = n*2n-1

d.      Vandermonde卷积:

C(2n, n) = C(n, 0)2+ C(n, 1)2+ C(n, 2)2+ … + C(n, n)2

3.       多项式定理

a.       (x1+ x2+…+ xt)n中,项x1n1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值