偶尔看到这个加和:
S
=
1
+
1
2
+
1
3
+
⋯
+
1
n
S=1+\frac{1}{2}+\frac{1}{3}+\dots+\frac{1}{n}
S=1+21+31+⋯+n1
查了专业术语,原来它是一个调和数,这个数列也为调和数列,是发散的。
当
n
→
∞
n\rightarrow\infty
n→∞ 时,值可以近似为:
log
n
\log n
logn
原理是将 S S S 看做一个积分: ∫ 1 ∞ 1 x d x \int_{1}^{\infty}\frac{1}{x}dx ∫1∞x1dx
深层次的东西涉及到数论方面,就不细看了。