Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______ / \ ___2__ ___8__ / \ / \ 0 _4 7 9 / \ 3 5
For example, the lowest common ancestor (LCA) of nodes 2
and 8
is 6
. Another example is LCA of nodes 2
and 4
is 2
, since a node can be a descendant of itself according to the LCA definition.
解:
如果两个node在root的两侧(或其中一个就是root),当前的root就是LCA,否则root向下移。由于是二叉搜索树当两个node值同时大于(小于)根节点值时就代表这两个节点在根的同一棵子树上。
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):
def lowestCommonAncestor(self, root, p, q):
"""
:type root: TreeNode
:type p: TreeNode
:type q: TreeNode
:rtype: TreeNode
"""
while(p.val-root.val)*(q.val-root.val)>0:
root=(root.left,root.right)[p.val>root.val]
return root