本文译至:http://japan.zdnet.com/article/35076390/3/
(2)高度的分析实现
抽取出的高精度特征值适用于机器学习算法,从时间序列数据计算异常度,自动检查异常状况或变化点(图5)等,能应用于人眼难以判断的现象的自动检测・诊断。
同时,使用过去数据来生成模型,预测未来的趋势(图6),对故障的预知等也是有帮助的。在图形传感器输入的情况下,使用机器学习,人脸或人物的检测(图7)和文字识别等自动化也变得可能。
图5:使用机器学习进行传感器信号的异常判定(上一段,波形是传感器的输入,下一段,显示波形的异常度)
图6:用过去数据进行趋势预测(机器学习生成的模型(红)和实际的传感器数据(蓝))
图7:从图片数据检测行人