构建IoT系统必须的五项内容 (Page 3)

本文译至:http://japan.zdnet.com/article/35076390/3/
(2)高度的分析实现

 抽取出的高精度特征适用于机器学算法,从时间序列数据算异常度,自动检查异常状况或化点(5)等,能用于人眼难以判断的现象的自动检断。

 同时,使用去数据来生成模型,预测未来的趋势6),对故障的知等也是有帮助的。在感器入的情况下,使用机器学,人脸或人物的测(7)和文字别等自化也变得可能。


5:使用机器学习进行传感器信号的异常判定(上一段,波形是感器的入,下一段,显示波形的异常度)



6:去数据进行趋势预测(机器学生成的模型(红)和实际感器数据(蓝))



7:片数据测行人


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值