
自然语言处理(NLP)
Robin_Pi
所有觉得难得东西,只是因为没有真正理解最基础的概念
展开
-
Python文本处理(3)——文本表示之 one-hot 词向量(1)——纯小白都能懂!
python 文本处理小结-供自己复习使用文本表示最基础的怕是最基础的 one-hot 编码,基础的东西有利于我们从源头和本质上进行思考。比如,现在给一堆文本数据给你,你会如何思考将文本信息传递出去并让计算机识别?——单词作为文本的最小单位,我们自然而然的会想到从单词入手。的确,自然语言就是一套用来表达含义的系统,在这套系统中,词,就是表义的基本单元。词向量被用来表示词的向量或表征,也可被...原创 2019-12-27 15:48:07 · 7421 阅读 · 4 评论 -
初识 gensim 之 word2vec
主要参考:https://www.jianshu.com/p/52ee8c5739b6(Gensim Word2vec 使用指南)https://rare-technologies.com/word2vec-tutorial/ (Word2vec Tutorial)作为自己复习使用。GensimGensim是一款开源的第三方Python工具包,用于从原始的非结构化的文本中,无监督地学习到文...原创 2019-12-27 00:19:28 · 419 阅读 · 0 评论 -
自然语言处理(NLP)之路——概念理解——从 Google AI 的 BERT 看自然语言处理(NLP)的预处理
2018 年 10 月 11 日,谷歌 AI 团队在 arXiv 提交了论文,发布了 BERT 模型。BERT(Bidirectional Encoder Representations from Transformers)的中文意思是:语言理解中深度双向转换模型的预训练模式。BERT 在机器阅读理解顶级水平测试 SQuAD 1.1 中表现出惊人的成绩。毋庸置疑,BERT 模型开启了 NLP 的...原创 2020-01-05 19:20:02 · 702 阅读 · 0 评论 -
一文梳理NLP词的表示——从one-hot到 word2vec
DeepNLP的表示学习·词嵌入来龙去脉·深度学习(Deep Learning)·自然语言处理(NLP)·表示(Representation)原创作品, 转载请注明出处:[ Mr.Scofield http://blog.cs...转载 2020-01-05 18:26:37 · 1432 阅读 · 0 评论 -
自然语言处理(NLP)之路——概念理解——从 Google translate 的 seq2seq 看自然语言处理(NLP)的发展
Google translate 与 seq2seqseq2seq 是 Google translate 使用的技术,它颠覆了传统的自然语言处理。而Google translate 上线的重大意义在于它证明了跨自然语言的可微分的可编辑的语义表征方式。它怎么做呢?实际上是这么几个步骤:第一,它把中文词先翻成一个词向量,变成一个数字向量。第二,它对这个词向量再编辑,变成一个语义表示的方式。...原创 2020-01-05 16:27:57 · 567 阅读 · 0 评论 -
自然语言处理(NLP)之路—(1)—面试准备:基础/重要知识点整理
写在前面思路:来源于《自然语言处理面试基础》;方式:点杀、输出与迭代;常见知识点0105 第一次知识点收集让我们先看看一些常见自然语言处理面试题:RNN 为什么会发生梯度消失?如何改进?LSTM 的模型结构是什么?为什么说 LSTM 具有长期记忆功能?LSTM 为什么能抑制梯度衰减?什么是 Word2Vec?如何训练?Word2vec,CBOW 和 Skip-gram 的区别...原创 2020-01-05 10:36:44 · 1214 阅读 · 0 评论