自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(372)
  • 资源 (9)
  • 收藏
  • 关注

原创 Shell(Bash)学习· 总章

Shell(Bash)· 总章学习记录:初识Linux(持续更新)初识 Shell 以及推荐教程Shell(bash)的基本语法Shell(bash)脚本入门推荐学习:阮一峰的《Bash 脚本教程》新手linux命令必须掌握命令

2020-11-19 10:37:25 63

原创 使用 Python 做音频处理·总章(持续更新)

pydub 功能比较强大,留以备用# -*- coding: utf-8 -*-# @Author : FELIX# @Date : 2018/5/18 15:13from pydub import AudioSegmentsound=AudioSegment.from_file("aaa.mp3","mp3")sound2=AudioSegment.from_file('bbb.mp3','mp3')# 把一个多声道音频分解成两个单声道# index[0]为左声道# inde

2020-11-10 21:22:42 80

原创 Kaldi 声纹识别·总章

Kaldi 声纹识别·总章理论代码主要记录自己的学习笔记。理论代码Kaldi 实战学习(1)说话人识别小例子(egs/aishell/v1)

2020-09-29 09:15:04 35

原创 声纹识别·总章

声纹识别1. 理论声纹识别基础声纹识别算法2. 资源声纹识别数据声纹识实践参考声纹识别关心的“谁在说”,用于解决生物身份确认和识别;而语音识别关心的“说了什么”,用于解决对说话内容的识别。1. 理论声纹识别基础声纹识别概述声纹识别流程声纹识别算法2. 资源声纹识别数据声纹识实践参考语音识别从入门到放弃参考:语音识别(八)——声纹识别, 地理...

2020-08-20 15:17:14 190

原创 kaldi 声纹识别·资源汇总

kaldi 基础kaldi 使用样例表kaldi 实战语音识别从入门到放弃Kaldi 中的声纹识别

2020-08-20 15:13:17 128

原创 2020 AI 算法工程师常见知识点整合

文章目录特征工程预处理特征选择降维机器学习深度学习NLPCVCoding数学综合知识点整理: 2020 AI 算法岗春招汇总 & 面经大全来了!点击接收你的招聘秘籍数据预测处理:合鲸:干货 | 教你一文掌握数据预处理 特征工程1.离散、连续特征一般怎么处理(onehot、归一化、why、方法 等);特征变换、构造/衍生新特征(woe、iv、统计量 等);特征筛选(离散...

2020-05-24 15:17:06 418

原创 值得反复思考的博客

文章目录特征工程特征工程特征工程之连续特征与离散特征处理方法介绍

2020-04-30 05:59:37 94

原创 Keras 深度学习攻略两篇(2):迁移神经网络的实际使用(问题记录)

深度迁移学习攻略2.1 应对过拟合数据增强2.2 评价指标:准确率合适么?交叉验证迁移学习2.3 如何提高迁移学习的效果模型/特征融合2.4 输入数据的格式(大小、通道数)模型小型化(降维)2.4 分析与可视化模型的可视化训练过程可视化特征图/模型可视化模型保存2.1 应对过拟合应对过拟合的方法:(1)增大可以用于训练的数据量数据增强增加数据样本(爬虫、多个数据集、迁移学习-预训...

2020-03-11 19:03:39 479

原创 深度学习算法/模型——总章

深度学习算法/模型-总章0. 承上启下:深度学习的目的/任务/优势机器学习的目的深度学习的任务/优势深度学习的改进/方向1. 深度学习介绍1.1 概论:[整体概述](https://blog.csdn.net/Robin_Pi/article/details/104657408)1.2 补充:[深度学习基础](https://blog.csdn.net/Robin_Pi/article/detai...

2020-03-05 12:10:56 150

原创 机器学习算法/模型——总章

目录1. 机器学习介绍2. 机器学习模型介绍线性回归1. 机器学习介绍机器学习介绍2. 机器学习模型介绍线性回归

2020-02-21 12:32:50 275

原创 机器学习——Sklearn学习笔记——总章

Sklearn学习笔记 0| 总章写在前面预处理模型选择算法分类回归聚类降维写在最后写在前面Sklearn 官方文档相当地详实,反而显得对初学者学习不太友好。本 “学习笔记” 系列就是参照Sklearn官方文档整理而得,结构上基本维持不变,内容少会有少许删减(过于详细和”偏“),以便自己以后查阅和复习。预处理模型选择算法分类回归聚类降维写在最后后续还会继续更新 “学习总结”...

2020-01-14 14:10:21 244

原创 Python数据分析之可视化——用 Seaborn 做数据可视化(0)总章

目录1. 介绍&框架1.1 Seaborn 与 Matplotlib 的关系1.2 Seaborn 的优势1.31.4 框架(理解)2. 绘图函数2.1 可视化统计关系2.2 可视化分类数据分类散点图同类观测值分布同类统计评估可视化“宽型”数据使用分面图进行多变量关系分析2.3 可视化数据集的数据分布可视化单变量分布可视化双变量分布(二元分布)可视化数据集中的成对关系2.4 可视化线性关系绘制线...

2020-01-13 09:48:51 236

原创 Python 进阶之路(一)Python 核心知识 ——框架&总章

目录一. 写在前面1. 反思&搭建框架2. 参考&资料二. Python 从基础到进阶1.1 基础篇之「基础&数据类型&控制流」1.2 基础篇之「函数&函数式编程」1.3 基础篇之「模块&面向对象编程」1.4 基础篇之「文件对象&错误处理」2.1 数值计算库之「NumPy」2.2 值计算库之「Pandas」2.3 数据可视化之「Matplotlib」3.1....

2020-01-07 15:21:46 145

原创 如何使用NumPy快速创建我们需要的数据?

不论是在平时的零碎学习还是网课的学习中,在代码上现实或者跑通一个算法或者模型不仅能够让自己理解的更深还能加强我们的记忆。所以,专门花点时间学习一下如何创建和组织出我们想要的数据很有必要。NumPy 数组NumPy 数组需要注意的一点是,数组是相同类型的元素按照一定顺序排列的组合。NumPy 数组的生成方式:生成一般数组生成一维数组:传入列表生成元组的数组:传入元组生成多维数组:传入嵌...

2020-01-06 17:23:23 143

原创 Python数据分析之可视化——用一篇文章总结:matplotlib、Pandas、seaborn

目录1. 使用 matplotlib 进行数据可视化1.1 基础概念1.2 核心步骤:画图三步走1.3 详细介绍:1.建立画布2. 建立坐标系(确定画图区域)3. 设置坐标轴设置坐标轴的标题设置坐标轴的刻度设置坐标轴的范围其他设置5.绘制图表6.图标显示1.4 常见问题1.5 极简代码实现一个坐标系多个坐标系2. 使用 Pandas 进行数据可视化线图条形图直方图箱线图散点图饼图3. 使用 sea...

2020-01-06 11:54:55 1066

原创 AI 之路——数据分析(1)Pandas小结与框架整理

写在前面主要是阶段性框架总结AI 之路:数据分析——机器学习——深度学习——CV/NLP工具/技能:Python、NumPy、Pandas、Matplotlib——Scikit-learn;LR、SVM…——TensorFlow、Keras、Pytorch;CNN、RNN…数据分析使用 NumPy 或者 Pandas 进行数据分析,后者更为强大和专业,而且有自己的 Matplotli...

2020-01-04 18:02:19 142

原创 Python数据分析之Pandas(1)——Pandas官方文档解读:一篇文章 Pandas 快速上手

一.概览两大数据结构:Series和DateFrame(分别对应一维数据和二维数据)记住:index(the rows) 用来代替 axis=0;columns 用来代替axis=1二.快速入门1. 数据导入CSV文件、Excel文件、HDF5pd.read_csv()pd.read_excel()pd.read_hdf()df = pandas.read_csv(...

2019-12-15 02:20:34 181

原创 Python数据分析之NumPy(1)——NumPy快速入门笔记:用一篇文章快速解最核心的NumPy知识

大部分内容是来自英文版官方文档,再加上自己的一点理解,供自己复习用。1. 几个重要概念1.1 array (NumPy数组)NumPy’s main object is the homogeneous multidimensional array.It is a table of elements (usually numbers), all of the same type, index...

2019-12-14 16:44:12 255

原创 Python 网络编程(3):SimpleHTTPServer

SimpleHTTPServerSimpleHTTPServer是Python2自带的一个模块,是Python的Web服务器。它在Python3已经合并到http.server模块中。SimpleHTTPServer在Python 3的用法与在Python 2的用法相似(python3 -m http.server 6789)SimpleHTTPServer有一个特性:如果待共享的目录下有index.html,那么index.html文件会被视为默认主页;如果不存在index.html文件,那么就会

2020-12-01 18:18:57 19

原创 Python 网络编程(2):socketserver

socket与socketserver0. 概述0.1 socket0.2 python中的socket1. socket2. socketserver2.1 server类2.2 RequestHandler类2.3 用socketserver创建一个服务的步骤0. 概述0.1 socketSocket的英文原义是“孔”或“插座”,在Unix的进程通信机制中又称为‘套接字’。套接字(socket)实际上并不复杂,它是由一个ip地址以及一个端口号组成,或者说套接字(socket)由一个指定的ip地址

2020-12-01 17:25:34 6

原创 Python 网络编程(1):socket

Python 网络编程1. 理论进程/线程网络编程互联网协议:`TCP /IP协议``ip 地址``TCP 协议`2. `TCP 编程`2.1 概述:客户端和服务器2.2 客户端编程2.3 服务器编程1. 理论进程/线程对于操作系统来说,一个任务就是一个进程(Process),比如打开一个浏览器就是启动一个浏览器进程,打开一个记事本就启动了一个记事本进程,打开两个记事本就启动了两个记事本进程,打开一个Word就启动了一个Word进程。有些进程还不止同时干一件事,比如Word,它可以同时进行打字、拼写

2020-12-01 14:50:42 15

原创 Python 的“取整”的坑:一文了解Python取整

Python取整0. 概念1. 向上取整: `math.ceil()`2. 向下取整:`math.floor()`3. 向0取整:`int()`4. 四舍五入:`round()`0. 概念脑海里想象出一根坐标轴,左右分别指向负无穷和正无穷,如果需要所取的变成:其“正方向”上最近的那个整数——>向上取整;其“负方向”上最近的那个整数——>向下取整;实数0所在的那个方向上最近的那个整数——>向0取整;最靠近它的那个整数——>四舍五入;1. 向上取整: math.ceil

2020-11-30 15:30:55 7

原创 Mac 不小心断开移动硬盘导致无法读取和加载(顺利解决!)

目录1. 问题2. 解决2.1 终端中执行:`diskutil list`2.2 输入`sudo diskutil mount /dev/disk0`,`disk1`、`disk2`同理情况一情况二情况三1. 问题不小心碰到USB插口,导致无论重新插几次都无法再识别出移动硬盘;重新电脑也没有效果(以前发生还可以识别的,今天不知道咋了)2. 解决主要是参考这篇文章进行:Mac移动硬盘不正确断开连接导致无法读取加载的解决方法,亲测有效2.1 终端中执行:diskutil list显示当前连接到电脑

2020-11-29 17:40:20 31

原创 报错:OSError: [Errno -9998] Invalid number of channels(成功解决、采坑经历)

目录1. 问题2. 解决2.1 更改 代码中的 channels 数目2.2 尝试重装 pyaudio1. 问题使用 Mac、 jupyter notebook、pyaudio,想要实现音频录制和播放,出现报错:---------------------------------------------------------------------------OSError Traceback (most recent call l

2020-11-27 15:06:34 28 1

原创 频谱图与傅里叶变换

频谱图【工程】深度说话人的应用及声纹识别系统的制作 (附完整代码与数据集)傅里叶变换傅里叶分析之掐死教程(完整版)更新于2014.06.06理解频域:

2020-11-26 13:41:53 26

原创 声纹识别(1)声纹识别的测试集和数据预处理

声纹识别技术小结:声纹建模技术1. 测试集2. 数据预处理2.1 音频质量检测和过滤2.2 音频质量提升3. 常用数据集1. 测试集之前也提到,声纹识别系统的测试阶段包括说话人注册和测试识别两个阶段:注册集输入作为底库,验证集输入作为测试数据。这部分讲一下在测试阶段(默认声纹的特征提取模型已知),注册集和测试集应该如何划分。首先,必须确认一点:注册集和验证集都属于测试集;其次,注册集和验证集都需要包含测试集中全部的说话人;最后,注册集和测试集中相同说话人下面的子集是不重复的(必须是不

2020-11-26 13:06:55 1103 1

原创 语音识别工具在声纹识别的应用

文章目录有了声纹识别的模型,如何应用?现在主要考虑在前端增加一些音频质量的评估工具,对音频进行一个初步的过滤。

2020-11-26 10:35:54 393 1

原创 语音质量评价指标:PESQ(已经过时)

PESQ概述PESQ 流程问题概述PESQ(Perceptual evaluation of speech quality)(语音质量的感知评估)是一种客观的、全参考的语音质量评估方法,其在国际电信联盟的标注化代号为ITU-T P.862。PESQ算法需要带噪的衰减信号和一个原始的参考信号,能够对客观语音质量评估提供一个主观MOS的预测值,而且可以映射到MOS刻度范围,PESQ得分范围在 -0.5–4.5 之间。得分越高表示语音质量越好。其实现代码如下(在Python中也可直接调用相应的pesq模块

2020-11-25 13:35:31 49

原创 Mac 安装 pyaudio出错(成功解决!)

问题:pip install pyaudio报错:解决pip install pipwinpipwin install pyaudio

2020-11-24 16:58:19 22

原创 音频特征(3):各种波形图像的小结

各种波形图像的小结这里将上两篇所写的关于波形图的一些区分做一个小结:波形图意义振动图反应某一个质点随时间位移(振幅)变化的图像波形图反映各质点在同一时刻不同位移(振幅)的曲线时域图信号随时间振幅的变化频域图信号的不同频率分量的振幅语谱图(时频域图)信号的频率、幅值 随时间的变化关于波形图的解释,可以查看:“声音”背后的原理(1):波(横波、纵波、声波)、声音的采集、声音的储存...

2020-11-23 16:58:16 39

原创 训练集、训练集、测试集?

突然一下记不起来验证集的作用了,再次小结一下。为什么要分训练集、验证集(也有人叫训练开发集)和测试集(甚至还有人想继续划分出一个测试开发集?周志华的西瓜书上其实说的很清楚:也就是说,训练集用来训练或者说拟合(fit)模型;验证集用来测试不同模型和参数下的表现,借此调整(tune)模型;测试集用来估计模型在实际使用(未知情况)时的泛化能力,即实施(deploy)模型。参考:能不能只要训练集和测试集,不要验证集呢?...

2020-11-19 14:03:13 32

原创 Linux 提示:Found a swap file by the name “.plda.sh.swp“

问题在使用 vim 打开脚本文件 plda.sh 时,出现提示:Found a swap file by the name ".plda.sh.swp",而且其所属的位置并不是当前地址。之前也出现了很多次了,一直没有注意,都是选择忽略,直接进行编辑…突然有些后怕,不知道读取的到底是哪一个?解决查询后得知:.swp文件是在vi编辑文件时产生的一个临时文件,在编辑过程中过一段时间自动保存一次。如果意外退出,比如在vi编辑文件过程中退出系统(意外关机、直接关闭了Shell终端等情况),该文件就会存在,

2020-11-19 10:22:37 16

原创 开发:KTV评分系统实现总结

文章目录第一阶段:预调研第二阶段:封装模块第三阶段:软件框架第四阶段:修正软件第五阶段:优化算法偶然看到一篇博文,该篇对KTV评分系统demo的实现进行了总结,个人觉有必要记录一下,以供学习“开发”的流程。大致分为这样几个步骤:第一阶段:预调研预调研,分析国内外该产品的现状。算法调研,多看看论文,分析总结吸收其中的优秀做法。matlab仿真各个模块算法效果第二阶段:封装模块将功能型模块算法改成C代码,封装成dll第三阶段:软件框架完成软件框架的设计,梳理各个模块之间的逻辑关系,将功能性模

2020-11-19 09:47:28 38

原创 小白一文快速的读懂shell(bash)脚本内容

文章目录对小白来说,最常见的疑惑如下:$0、$1…:一般是变量-- :后面紧跟参数分号;:隔断不同代码块另起一行:隔断不同代码块点.:等价于 sourcepwd(注意不是引号):当前路径set -e:设置脚本只要发生错误,就终止执行fi:fi为if语句的结束,相当于end...

2020-11-18 16:09:52 10

原创 shell(bash)的模式扩展

模式扩展依旧摘自阮大佬的Bash教程,这里仅做个人学习记录。Shell 接收到用户输入的命令以后,会根据空格将用户的输入,拆分成一个个词元(token)。然后,Shell 会扩展词元里面的特殊字符,扩展完成后才会调用相应的命令。这种特殊字符的扩展,称为模式扩展(globbing)。其中有些用到通配符,又称为通配符扩展(wildcard expansion)。Bash 一共提供八种扩展。波浪线扩展:波浪线~会自动扩展成当前用户的主目录? 字符扩展:?字符代表文件路径里面的任意单个字符,不包括空字符

2020-11-18 15:46:18 9

原创 Shell(bash)脚本入门

脚本脚本参数注释命令执行结果依旧摘自阮大佬的Bash教程,这里仅做个人学习记录。脚本参数script.sh word1 word2 word3上面例子中,script.sh是一个脚本文件,word1、word2和word3是三个参数。脚本文件内部,可以使用特殊变量,引用这些参数:$0:脚本文件名,即script.sh$1~$9:对应脚本的第一个参数到第九个参数$@:全部的参数,参数之间使用空格分隔$*:全部的参数,参数之间使用变量$IFS值的第一个字符分隔,默认为空格,但是可以自定义。

2020-11-18 14:51:27 26

原创 Shell(bash)的基本语法

主要是参考阮大佬的教程,这里仅做一个记录。0. echo命令由于后面的例子会大量用到echo命令,这里先介绍这个命令。echo 类似Python的print()函数,但是不需要引号就能直接输出:单行输出(base) Robin-macbook-pro:~ robin$ echo hello worldhello world多行输出(包括换行符)如需要输出多行内容,则需要加引号(单双都可):(base) Robin-macbook-pro:~ robin$ echo 'today

2020-11-18 13:28:14 33

原创 Mac 去除.DS_store并禁止其自动生成

真的是累了,除之而后快:禁止生成打开 “终端” ,复制黏贴下面的命令,回车执行,重启Mac便可生效。defaults write com.apple.desktopservices DSDontWriteNetworkStores -bool TRUE恢复.DS_store生成defaults delete com.apple.desktopservices DSDontWriteNetworkStores清除现有.DS_Store文件find . -name .DS_Stor

2020-11-17 18:43:19 18

原创 如何修改Mac os Terminal 的皮肤

更改步骤进入Spacegray下载ZIP或者clone仓库解压后,双击spacegray.terminal,设置为默认(如下图所示)3.前后对比至于,想要调整使用ls后的不同文件的色彩,可能需要另行设置。参考:Spacegray写给小白的工程师入门 - 从 Python 开始...

2020-11-17 18:40:20 11

原创 【sphinx】中文声学模型训练

点击

2020-11-17 18:39:11 8

T-REC-P.862(PESQ) 源码 + PDF文档|T-REC-P.862-200102-I!!SOFT-ZST-E.zip

客观语音质量评估(PESQ) 源码:pesqpar.h、pesqmod.c、pesqmain.c、pesqio.c、pesqdsp.c、pesq.h、dsp.h... 文档:P.862.pdf、P862E.doc

2020-10-20

初始版完整数据CK+表情识别数据集(Part3)|CK+ part 3.zip

该资源为官网下载来的完整初始版数据集,不是网上已经被个人更改过的数据集! (由于超过1000M,分为三个部分来上传) CK+ 是表情识别领域最为常见的数据集之一!包括8种基本表情(包括中性的话)。 数据库包括123个subjects, 593 个 image sequence,每个image sequence的最后一张 Frame 都有action units 的label,而在这593个image sequence中,有327个sequence 有 emotion的 label。这个数据库是人脸表情识别中比较流行的一个数据库,很多文章都会用到这个数据做测试

2020-10-16

初始版完整数据CK+表情识别数据集(Part2)|CK+ part 2.zip

该资源为官网下载来的完整初始版数据集,不是网上已经被个人更改过的数据集! (由于超过1000M,分为三个部分来上传) CK+ 是表情识别领域最为常见的数据集之一!包括8种基本表情(包括中性的话)。 数据库包括123个subjects, 593 个 image sequence,每个image sequence的最后一张 Frame 都有action units 的label,而在这593个image sequence中,有327个sequence 有 emotion的 label。这个数据库是人脸表情识别中比较流行的一个数据库,很多文章都会用到这个数据做测试

2020-10-16

初始版完整数据CK+表情识别数据集(Part1)|CK+ part 1.zip

该资源为官网下载来的完整初始版数据集,不是网上已经被个人更改过的数据集! (由于超过1000M,分为三个部分来上传) CK+ 是表情识别领域最为常见的数据集之一!包括8种基本表情(包括中性的话)。 数据库包括123个subjects, 593 个 image sequence,每个image sequence的最后一张 Frame 都有action units 的label,而在这593个image sequence中,有327个sequence 有 emotion的 label。这个数据库是人脸表情识别中比较流行的一个数据库,很多文章都会用到这个数据做测试

2020-10-16

人脸表情识别数据集 jaffe.zip|jaffe.zip

人脸表情识别数据集 JAFFE JAFFE数据集一共有213张图像.选取了10名日本女学生,每个人做出7种表情.7种表情包括: Angry,Disgust,Fear,Happy,Sad,Surprise,Neutral.(愤怒,厌恶,恐惧,高兴,悲伤,惊讶,中性)

2020-10-16

清华大学《人工智能》课件.zip|清华大学《人工智能》课件.zip

第一章: 神奇的人工智能(王 东,4学时授课,2学时实验)[课堂(PDF)] [实验(PDF)] [源文件] 第二章: 认识你的脸 (汤志远,4学时授课,2学时实验)[课堂(PDF)] [实验(PDF)] [源文件] 第三章: 倾听你的声音 (汤志远,4学时授课,2学时实验)[课堂(PDF)] [实验(PDF)] [源文件] 第四章: 理解你的语言 (李蓝天,4学时授课,2学时实验)[课堂(PDF)] [实验(PDF)] [源文件] 第五章: 模仿你的行为 (李蓝天,4学时授课,2学时实验)[课堂(PDF)] [实验(PDF)] [源文件

2020-10-14

科大讯飞-InterReco 4.0 产品白皮书.pdf|科大讯飞-InterReco 4.0 产品白皮书.pdf

语音识别(Speech Recognize)技术,是让机器通过识别和理解过程使之听懂人类语言的技术。语音识别技术是信息技术中人机交互的关键技术,目前已经在呼叫中心、电信增值业务、企业信息化系统中有了广泛的应用。 InterReco电话语音识别产品整合了科大讯飞研究院、中国科技大学讯飞语音实验室以及清华大学讯飞语音实验室在语音识别上多年的技术成果,并针对中文语音识别应用做了多层面的优化,核心技术上达到了国际领先水平。

2020-09-04

科大讯飞-InterVeri 2.1 产品白皮书.pdf|科大讯飞-InterVeri 2.1 产品白皮书.pdf

科大讯飞-InterVeri 2.1 产品白皮书 InterVeri(iFlytek Speaker Verifier)声纹识别系统是科大讯飞针对安全领域日益加剧的市场需求和增值领域应用而推出的专业声纹识别引擎。它通过对说话者语音和数据库中登记的声纹作比较,对用户进行身份校验和鉴别,从而确定该说话人是否为本人或是否为集群中的哪个人。声纹识别所提供的安全性可与其他生物识别技术(指纹、掌形和虹膜)相媲美,且只需电话或麦克风即可,无需特殊的设备,数据采集极为方便,造价低廉,是最为经济、可靠、简便和安全的身份识别方式。

2020-09-04

fer2013.csv

表情识别数据集:Fer2013,为CSV格式,可以用excel打开,但是比较缓慢,也可使用pandas读取,以及转化为图片格式

2020-05-24

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除