IIoT(智能物联网)的现状、应用及安全

    近年来,物联网(IoT)作为推动现代公司和智能城市发展的一个范式,已经取得了显著的发展。IoT使得分布式设备(如手机、平板电脑和计算机)能够感知并从外部环境传输数据,以服务于最终用户。IoT的概念主要依赖于设备之间的通信,以提供本地服务,例如协作数据收集,以及设备与服务器(如云服务器、边缘服务器或数据中心)之间的互连,以提供高级服务,如数据管理和网络监控。

    智能解决方案与ML/AI在IoT网络中的整合形成了一种新的网络范式,即智能物联网(IIoT)。IIoT已经改变了智能医疗保健、智能交通和智能工业等IoT应用。特别是,IIoT为设备进步打开了众多机会,例如为本地IoT设备配备由集成AI模型驱动的设备智能,以及服务提供,包括智能数据传输和AI辅助的数据处理。

1 智能物联网的现状

1.1 人工智能(AI)及其子领域如机器学习(ML)、深度学习(DL)、联邦学习(FL)和强化学习(RL)之间的关系及主要模型

  • ML 是 AI 的基础:ML 是 AI 技术的核心,它允许计算机从数据中学习并改进其性能。
  • DL 是 ML 的一种特殊形式:DL 使用深层神经网络来学习数据的复杂特征和模式,它在图像和语音识别等领域取得了巨大成功。
  • FL 是一种分布式 ML 技术,用于保护用户隐私和数据安全:FL 允许多个设备在本地训练模型,同时保护用户隐私和数据安全。
  • RL 是一种 ML 技术,用于创建可以与周围环境互动并学习如何做出最佳决策的智能体:RL 在游戏、机器人技术和推荐系统等领域得到了广泛应用。

1.2 AI的子领域在物联网(IoT)系统中的应用和发展

  • 机器学习(ML):ML是一种让计算机系统从经验中学习的技术,它在IoT中的应用包括分类、检测和数据加密等任务。ML方法如监督学习、无监督学习和半监督学习被广泛用于IoT系统中,以提高系统的效率和准确性。
  • 深度学习(DL):DL因其在处理大型数据集时的出色性能而在IoT系统中越来越受欢迎。DL模型的改进可以归因于其固有的非线性,这允许模型大小的增加,从而能够更有效地扩展到更大的数据集。此外,由IoT网络生成的大量数据是DL成功的关键驱动力。DL模型采用复杂的线性和非线性函数组合来有效学习相关特征。在IoT中,DL模型能够处理视觉数据、时间序列数据和视频文本等多种类型的数据,并在智能医疗、智能电网和智能农业等领域展现出显著的性能提升
  • 联邦学习(FL):FL是一种分布式机器学习方法,它允许在不共享原始数据的情况下训练模型。这对于保护用户隐私尤为重要,因此在IoT中得到了广泛应用,尤其是在处理敏感医疗数据时。FL技术还包括水平FL(HFL)、垂直FL(VFL)和联邦迁移学习(FTL)等变体。
  • 深度强化学习(DRL):DRL结合了深度学习和强化学习的原理,使代理能够通过与环境互动来学习最优策略。在IoT中,DRL被用于优化资源分配、灌溉计划和交通流量预测等任务,提高了系统的自主性和适应性。

2 智能物联网的应用

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值