LeetCode Triangle Java版本

题目描述:

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.













题目分析:

我的思路是这样的:先用贪婪算法求出一个局部最优解,然后用深度优先算法去遍历,不断替换最优解。结果超时了。。。

代码如下:

public class Solution {
    int minSum = 0;
    int tempSum = 0;
    int rows = 0;
    List<List<Integer>> tri;
    
    public void deepSearch(int rowNum, int index){
        List<Integer> rowList = tri.get(rowNum);
        tempSum += rowList.get(index);
        if(rowNum == rows-1){
            if(tempSum < minSum)
                minSum = tempSum;
            tempSum = tempSum - rowList.get(index);
            return;
        }
        deepSearch(rowNum+1,index);
        deepSearch(rowNum+1,index+1);
    }
    
    public int minimumTotal(List<List<Integer>> triangle) {
        rows = triangle.size();
        if(rows == 0)
            return 0;
        
        int index = 0;
        List<Integer> rowList = triangle.get(0);
        minSum += rowList.get(0);
        for(int i=1;i<rows;i++){
            rowList = triangle.get(i);
            if(rowList.get(index) <= rowList.get(index+1)){
                minSum += rowList.get(index);
            }
            else{
                minSum += rowList.get(index+1);
                index = index+1;
            }
        }
        
        tri = triangle;
        deepSearch(0,0);
        return minSum;
    }
}

这个代码自我感觉写的很糟糕。写起来比较费劲,而且不是最优的解法,而且还超时了。自己太过偷懒,什么问题都想着用递归去解决。

看了别人的解法,用的DP,十分简洁,让我很想记录下来。代码如下:

public class Solution {
    public int minimumTotal(List<List<Integer>> triangle) {
        for(int i = triangle.size() - 2; i >= 0; i--)
            for(int j = 0; j <= i; j++)
                triangle.get(i).set(j, triangle.get(i).get(j) + Math.min(triangle.get(i + 1).get(j), triangle.get(i + 1).get(j + 1)));
        return triangle.get(0).get(0);
    }
}

很佩服这样的代码,自己还是差很多啊。。








评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值