题目描述:
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
题目分析:
我的思路是这样的:先用贪婪算法求出一个局部最优解,然后用深度优先算法去遍历,不断替换最优解。结果超时了。。。
代码如下:
public class Solution {
int minSum = 0;
int tempSum = 0;
int rows = 0;
List<List<Integer>> tri;
public void deepSearch(int rowNum, int index){
List<Integer> rowList = tri.get(rowNum);
tempSum += rowList.get(index);
if(rowNum == rows-1){
if(tempSum < minSum)
minSum = tempSum;
tempSum = tempSum - rowList.get(index);
return;
}
deepSearch(rowNum+1,index);
deepSearch(rowNum+1,index+1);
}
public int minimumTotal(List<List<Integer>> triangle) {
rows = triangle.size();
if(rows == 0)
return 0;
int index = 0;
List<Integer> rowList = triangle.get(0);
minSum += rowList.get(0);
for(int i=1;i<rows;i++){
rowList = triangle.get(i);
if(rowList.get(index) <= rowList.get(index+1)){
minSum += rowList.get(index);
}
else{
minSum += rowList.get(index+1);
index = index+1;
}
}
tri = triangle;
deepSearch(0,0);
return minSum;
}
}
这个代码自我感觉写的很糟糕。写起来比较费劲,而且不是最优的解法,而且还超时了。自己太过偷懒,什么问题都想着用递归去解决。
看了别人的解法,用的DP,十分简洁,让我很想记录下来。代码如下:
public class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
for(int i = triangle.size() - 2; i >= 0; i--)
for(int j = 0; j <= i; j++)
triangle.get(i).set(j, triangle.get(i).get(j) + Math.min(triangle.get(i + 1).get(j), triangle.get(i + 1).get(j + 1)));
return triangle.get(0).get(0);
}
}
很佩服这样的代码,自己还是差很多啊。。