积木大赛
(block.cpp/c/pas)
【题目描述】
春春幼儿园举办了一年一度的“积木大赛”。今年比赛的内容是搭建一座宽度为𝑛的大厦,大厦可以看成由𝑛块宽度为1的积木组成,第𝑖块积木的最终高度需要是ℎ𝑖。
在搭建开始之前,没有任何积木(可以看成𝑛块高度为 0 的积木)。接下来每次操作,小朋友们可以选择一段连续区间[𝐿, 𝑅],然后将第𝐿块到第𝑅块之间(含第 L 块和第 R 块)所有积木的高度分别增加1。
小𝑀是个聪明的小朋友,她很快想出了建造大厦的最佳策略,使得建造所需的操作次数最少。但她不是一个勤于动手的孩子,所以想请你帮忙实现这个策略,并求出最少的操作次数。
【输入】
输入文件为 block.in
输入包含两行,第一行包含一个整数𝑛,表示大厦的宽度。
第二行包含𝑛个整数,第𝑖个整数为ℎ𝑖。
【输出】
输出文件为 block.out
仅一行,即建造所需的最少操作数。
【输入输出样例】
block.in block.out
5
2 3 4 1 2
block.out
5
【样例解释】
其中一种可行的最佳方案,依次选择
[1,5] [1,3] [2,3] [3,3] [5,5]
【数据范围】
对于 30%的数据,有1 ≤ 𝑛 ≤ 10;
对于 70%的数据,有1 ≤ 𝑛 ≤ 1000;
对于 100%的数据,有1 ≤ 𝑛 ≤ 100000, 0 ≤ ℎ𝑖 ≤ 10000。
这明显是一道…模拟题嘛。
所以,我第一次想到的思路就是这歌样子的。
-----4-----
—3-4----
2-3-4----2
2-3-4-1-2
第一层循环枚举此时的高度。
当所有建筑物都小于这个高度时,就都可以一起盖上去。
如果有分开的阶段,就算两次。
先贴代码…
//代码给最终程序覆盖了!
//所以莫得...
可是!
这样会超时。
注意:n<=100000 , h<=10000。
这样,时间复杂度为1000000000.(1*10^9)
。。。超时两个点。
虽然是理所当然的…
但是新方法是有必要学习的啦!
第二思路:
每两个之间如果有上升的差距,就说明左边这个矮一点的要补齐到右边才能一起盖楼,所以要改的其实就是差距!
由于第一个并没有算进去,被当做基准线。soyi在最后一定要补上a[1]。
正解代码:
#include<bits/stdc++.h>
using namespace std;
int num[100001];
int mmax=-99999;
int flag;
int main()
{
freopen("block.in","r",stdin);
freopen("block.out","w",stdout);
int n,ans=0,st,ed;
cin>>n;
for(int i=1;i<=n;i++)
cin>>num[i],mmax=max(num[i],mmax);
for(int i=1;i<=n;i++)
{
if(num[i]<num[i+1]) ans+=abs(num[i]-num[i+1]);
}
cout<<ans+num[1];
return 0;
}
再见!