从零开始构建GraphRAG红楼梦知识图谱问答项目(一)

文章结尾有CSDN官方提供的学长的联系方式!!
欢迎关注B站

本系统从零开始构建一个基于GraphRAG的红楼梦项目

视频

从零开始红楼梦GraphRAG问答系统

01 本项目的目标

本系统目标是从零开始构建一个基于GraphRAG的红楼梦项目,基于红楼梦的文本通过GraphRAG抽取知识图谱,搭建问答系统。

初步搭建效果展示

利用vue开发的一个前端
后端为基于GraphRAG的问答服务端
在这里插入图片描述
在这里插入图片描述

项目环境

  • 使用macbook开发
  • 开发工具为Pycharm
  • Python 3.12
  • 使用到的chat模型为:Qwen/Qwen3-32B
  • 嵌入模型为:BAAI/bge-m3

02 RAG VS GraphRAG

GraphRAG是微软研究院发布的一套数据处理流水线及转换工具集,通过大语言模型(LLM)能力从非结构化文本中提取富含语义的结构化数据。
若需深入了解GraphRAG如何提升大语言模型对特定领域私有数据的推理能力,如果需要更多的信息,可以参阅微软研究院的技术博客
在这里插入图片描述
GraphRAG 作为 RAG 的全新范式,通过三大关键创新突破传统 RAG 的局限,深度优化面向特定领域的大语言模型(LLM)应用:
(i) 图结构化知识表征:显式捕获实体关系与领域层级结构;
(ii) 图感知检索机制:支持多跳推理与上下文保全的知识获取;
(iii) 结构引导知识搜索算法:保障超大规模知识库中的高效检索。

03 RAG VS 两种GraphRAG

传统RAG与两种典型GraphRAG工作流程概述

  • 非图RAG:将文本数据分割为片段,按相似度排序,并检索最相关的文本来生成响应。
  • 基于知识的GraphRAG:利用实体识别和关系抽取技术,从文本中提取细粒度知识图谱,提供面向领域的精细信息。
  • 基于索引的GraphRAG:将文本概括为高层级主题节点,通过节点链接形成索引图谱,同时通过事实关联将主题映射回原文。
    在这里插入图片描述

04 创建环境

4.1 创建项目

使用PyCharm创建一个项目叫GraphRAG001,并且选择创建一个虚拟环境,是python3.12的
然后创建一个requirements.txt
内容如下

fastapi==0.112.0
uvicorn==0.30.6
pandas==2.2.2
tiktoken==0.7.0
graphrag==0.3.0
pydantic==2.8.2
python-dotenv==1.0.1
asyncio==3.4.3
aiohttp==3.10.3
numpy==1.26.4
scikit-learn==1.5.1
matplotlib==3.9.2
seaborn==0.13.2
nltk==3.8.1
spacy==3.7.5
transformers==4.44.0
torch==2.2.2
torchvision==0.17.2
torchaudio==2.2.2
future

安装python依赖

pip install -r requirements.txt              

注意,版本要和我一致,否则后续容易出问题。

4.2 创建目录

同时在根目录创建三个文件夹

  • cache
  • input
  • inputs

4.3 拷贝数据集

数据集拷贝到input文件夹中
在这里插入图片描述

05 运行GraphRAG

5.1 初始化

python3 -m graphrag.index --init --root ./
这个步骤的可能要花一点时间
在这里插入图片描述
这个步骤执行完,会给我们的目录中添加

  • output 文件夹
  • prompts 文件夹
  • .env 环境文件
  • settings.yaml 配置文件

5.2 修改配置文件

修改.env

GRAPHRAG_API_BASE=你的地址/v1
GRAPHRAG_CHAT_API_KEY=你的api-key
GRAPHRAG_CHAT_MODEL=deepseek_r1_llama_70b
GRAPHRAG_EMBEDDING_API_KEY=你的地址
GRAPHRAG_EMBEDDING_MODEL=bge-m3

GRAPHRAG_ENTITY_EXTRACTION_PROMPT_FILE=prompts/entity_extraction.txt
GRAPHRAG_SUMMARIZE_DESCRIPTIONS_PROMPT_FILE=prompts/summarize_descriptions.txt
GRAPHRAG_CLAIM_EXTRACTION_PROMPT_FILE=prompts/claim_extraction.txt
GRAPHRAG_COMMUNITY_REPORT_PROMPT_FILE=prompts/community_report.txt

GRAPHRAG_INPUT_DIR=input
GRAPHRAG_CACHE_DIR=cache

修改settings.yaml

encoding_model: cl100k_base
skip_workflows: []
llm:
  api_key: ${GRAPHRAG_CHAT_API_KEY}
  type: openai_chat # or azure_openai_chat
  model: ${GRAPHRAG_CHAT_MODEL}
  model_supports_json: true # recommended if this is available for your model.
  max_tokens: 2000
  # request_timeout: 180.0
  # api_base: https://<instance>.openai.azure.com
  api_base: ${GRAPHRAG_API_BASE}
  # api_version: 2024-02-15-preview
  # organization: <organization_id>
  # deployment_name: <azure_model_deployment_name>
  # tokens_per_minute: 150_000 # set a leaky bucket throttle
  # requests_per_minute: 10_000 # set a leaky bucket throttle
  # max_retries: 10
  # max_retry_wait: 10.0
  # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
  # concurrent_requests: 25 # the number of parallel inflight requests that may be made
  # temperature: 0 # temperature for sampling
  # top_p: 1 # top-p sampling
  # n: 1 # Number of completions to generate

parallelization:
  stagger: 0.3
  # num_threads: 50 # the number of threads to use for parallel processing

async_mode: threaded # or asyncio

embeddings:
  ## parallelization: override the global parallelization settings for embeddings
  async_mode: threaded # or asyncio
  llm:
    api_key: ${GRAPHRAG_EMBEDDING_API_KEY}
    type: openai_embedding # or azure_openai_embedding
    model: ${GRAPHRAG_EMBEDDING_MODEL}
    # api_base: https://<instance>.openai.azure.com
    api_base: ${GRAPHRAG_API_BASE}
    # api_version: 2024-02-15-preview
    # organization: <organization_id>
    # deployment_name: <azure_model_deployment_name>
    # tokens_per_minute: 150_000 # set a leaky bucket throttle
    # requests_per_minute: 10_000 # set a leaky bucket throttle
    # max_retries: 10
    # max_retry_wait: 10.0
    # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
    # concurrent_requests: 25 # the number of parallel inflight requests that may be made
    # batch_size: 16 # the number of documents to send in a single request
    # batch_max_tokens: 8191 # the maximum number of tokens to send in a single request
    # target: required # or optional



chunks:
  size: 1200
  overlap: 100
  group_by_columns: [id] # by default, we don't allow chunks to cross documents

input:
  type: file # or blob
  file_type: text # or csv
  # base_dir: "input"
  base_dir: ${GRAPHRAG_INPUT_DIR}
  file_encoding: utf-8
  file_pattern: ".*\\.txt$"

cache:
  type: file # or blob
  # base_dir: "cache"
  base_dir: ${GRAPHRAG_CACHE_DIR}
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

storage:
  type: file # or blob
  base_dir: "output/${timestamp}/artifacts"
  # base_dir: "inputs/artifacts"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

reporting:
  type: file # or console, blob
  base_dir: "inputs/${timestamp}/reports"
#  base_dir: ${GRAPHRAG_REPORTING_DIR}
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

entity_extraction:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  # prompt: "prompts/entity_extraction.txt"
  prompt: ${GRAPHRAG_ENTITY_EXTRACTION_PROMPT_FILE}
  entity_types: [organization,person,geo,event]
  max_gleanings: 1

summarize_descriptions:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  # prompt: "prompts/summarize_descriptions.txt"
  prompt: ${GRAPHRAG_SUMMARIZE_DESCRIPTIONS_PROMPT_FILE}
  max_length: 500

claim_extraction:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  # 开启协变量
  enabled: true
  # prompt: "prompts/claim_extraction.txt"
  prompt: ${GRAPHRAG_CLAIM_EXTRACTION_PROMPT_FILE}
  description: "Any claims or facts that could be relevant to information discovery."
  max_gleanings: 1

community_reports:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  # prompt: "prompts/community_report.txt"
  prompt: ${GRAPHRAG_COMMUNITY_REPORT_PROMPT_FILE}
  max_length: 2000
  max_input_length: 8000

cluster_graph:
  max_cluster_size: 10

embed_graph:
  enabled: false # if true, will generate node2vec embeddings for nodes
  # num_walks: 10
  # walk_length: 40
  # window_size: 2
  # iterations: 3
  # random_seed: 597832

umap:
  enabled: false # if true, will generate UMAP embeddings for nodes

snapshots:
  graphml: false
  raw_entities: false
  top_level_nodes: false

local_search:
  # text_unit_prop: 0.5
  # community_prop: 0.1
  # conversation_history_max_turns: 5
  # top_k_mapped_entities: 10
  # top_k_relationships: 10
  # llm_temperature: 0 # temperature for sampling
  # llm_top_p: 1 # top-p sampling
  # llm_n: 1 # Number of completions to generate
  # max_tokens: 12000

global_search:
  # llm_temperature: 0 # temperature for sampling
  # llm_top_p: 1 # top-p sampling
  # llm_n: 1 # Number of completions to generate
  # max_tokens: 12000
  # data_max_tokens: 12000
  # map_max_tokens: 1000
  # reduce_max_tokens: 2000
  # concurrency: 32

5.3 优化提示词

python3 -m graphrag.prompt_tune --config ./settings.yaml --root ./ --no-entity-types --language Chinese --output ./prompts
在这里插入图片描述
在这里插入图片描述
这个步骤执行完之后,工具会根据数据情况对提示词进行优化。
我们可以查看prompts目录下的文件:
在这里插入图片描述

5.4 构建索引

python3 -m graphrag.index --root ./
这个步骤的过程比较长,执行过程:
在这里插入图片描述
执行完成之后是这样的:
在这里插入图片描述
生成的结果位置:
在这里插入图片描述

06 测试

python3 -m graphrag.query --root ./ --method global "宝玉和宝钗、黛玉之间的关系?"

python3 -m graphrag.query --root ./ --method local "宝玉和宝钗、黛玉之间的关系?"

在这里插入图片描述

在这里插入图片描述

参考项目

graphrag
Awesome-GraphRAG
HongLouMeng-Refined
GraphragTest

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B站麦麦大数据

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值