图像超分辨动态重建的传统方法(matlab)

基于临插值和双线性内插值法

1、 读取与显示输入图像:

%输入图像和显示图像
function []=readShow()
ima=imread('test.jpg'); %输入图像
imshow(ima); %显示图像
end

显示输出图像 --> readShow()

输出结果如下:


2、点运算:

1) 图像的缩放代码,并显示缩放处理前后的图像

这里将讲解两种缩放图像的方法:

最近临插值

把最近邻像素的灰度值赋给每个新位置,代码如下:

%Author: DreamBoy
%采用最近邻插值对图像进行缩放处理
%参数n表示缩放倍数
function []=scale1(n)
ima=imread('test.jpg');
imshow(ima);
title('输入图像');

ima=double(ima);
swh=size(ima); %得到原图像的宽高
sw=swh(:,2); %得到原图像的宽
sh=swh(:,1); %得到原图像的高
dw=ceil(sw * n); %得到
dh=ceil(sh * n);
resIma=zeros(dh,dw);
for i=1:dh
for j=1:dw
tx=round(i/n); %缩放后的图像坐标在原图像处的位置
ty=round(j/n);

    <span class="hljs-keyword">if</span>(tx &lt; <span class="hljs-number">1</span>) %如果越界,则进行调整
        tx = <span class="hljs-number">1</span>;
    <span class="hljs-keyword">end</span>
    <span class="hljs-keyword">if</span>(tx &gt; sh)
        tx = swh;
    <span class="hljs-keyword">end</span>
    <span class="hljs-keyword">if</span>(ty &lt; <span class="hljs-number">1</span>)
        ty = <span class="hljs-number">1</span>;
    <span class="hljs-keyword">end</span>
    <span class="hljs-keyword">if</span>(ty &gt; sw)
        ty = sw;
    <span class="hljs-keyword">end</span>
    resIma(i,j)=ima(tx,ty); %将缩放后的图像坐标在原图像处的位置的灰度值赋值给缩放后的图像
<span class="hljs-keyword">end</span>

end

resIma=uint8(resIma);
figure;
imshow(resIma);
title(‘输出图像’);
end


放大到原图像的两倍 --> scale1(2^.5)

输入和输入出结果如下:



缩小到原图像的1/4倍 --> scale1(1/2)

输出结果如下:


双线性插值


我们先按要求缩放原图像,得出缩放后的坐标,再有缩放后的坐标(x,y)求出该坐标在原图像上的位置,即(x/n,y/n),即为上图所示的D点(+u,+v)。其中(u,v)表示小数部分的坐标。

设原图像中有4个点,分别为 (,),  (,),  (,),   (,),其中这四点为相邻点,即



。而图中D点(+u,+v)为缩放图像所要插入的点。

根据双线性插值的算法,先在x方向上进行线性插值,即有



再在y方向上进行线性插值,即有


综上,有:


根据上述公式,使用Matlab编写程序,代码如下:

%采用双线性内插值对图像进行缩放处理
%参数n表示缩放的倍数
function []=scale2(n)
ima=imread('test.jpg'); %读取原图像
ima=double(ima); %二维矩阵转为双精度类型
swh=size(ima); %获取原图像的宽高
sh=swh(:,1); %获取原图像的高
sw=swh(:,2); %获取原图像的宽

%“加墙”
ima2=zeros(sh+2,sw+2);
ima2(1,2:sw+1)=ima(1,:); %原图像上边加墙,灰度值与边界一致
ima2(sh+2,2:sw+1)=ima(sh,:); %原图像下边加墙,灰度值与边界一致
ima2(2:sh+1,2:sw+1)=ima; %将原图像赋值给中心部分
ima2(:,1)=ima2(:,2); %原图像左边加墙,灰度值与边界一致
ima2(:,sw+2)=ima2(:,sw+1); %原图像右边加墙,灰度值与边界一致

dw=swn; %计算缩放后的图像的宽
dh=sh
n; %计算缩放后的图像的高

dw1=round((sw+2)*n); %计算加墙后缩放的图像的宽
dh1=round((sh+2)*n); %计算加墙后缩放的图像的高

resIma1=zeros(dh1,dw1); %创建原图像的矩阵

%从不是“墙”的位置开始计算缩放后的图像的各点灰度值
%考虑缩小图像时,输入的缩放倍数是小数,需进行取整
start=round(n+1);
endI=round(dh+n);
endJ=round(dw+n);

for i=start:endI
for j=start:endJ
tx=i/n; %缩放后的图像坐标在原图像处的位置
ty=j/n;
tdx=tx-floor(tx); %得到小数坐标
tdy=ty-floor(ty);
%确定临近四个角的坐标
%Q11点
Q11x=tx-tdx;
Q11y=ty-tdy;
%Q12点
Q12x=tx-tdx;
Q12y=Q11y+1;
%Q21点
Q21x=Q11x+1;
Q21y=Q11y;
%Q22点
Q22x=Q11x+1;
Q22y=Q11y+1;
%根据双线性内插算法,算出缩放后的图像在(i,j)点处的灰度值
resIma1(i,j)=tdxtdyima2(Q11x,Q11y)+(1-tdx)tdyima2(Q12x,Q12y)+tdx*(1-tdy)ima2(Q21x,Q21y)+(1-tdy)(1-tdx)*ima2(Q22x,Q22y);
end
end
resIma=resIma1(n+1:dh+n,n+1:dw+n); %截取除墙外的中心部分
resIma=uint8(resIma);
imshow(resIma); %显示缩放后的图像
end

缩小到原图像的1/4倍 --> scale2(1/2)

输出结果如下:

放大到原图像的两倍 --> scale2(2^.5)

输出结果如下:


2) 剪切输入图像左上角的四分之一,并显示剪切前后的图像

代码如下:

%参数n表示剪切原图像的n
function []=cutIma(n)
ima=imread('test.jpg');
ima=double(ima);
swh=size(ima);
sh=swh(:,1);
sw=swh(:,2);
dh=round(sh*n);
dw=round(sw*n);
resIma=ima(1:dh,1:dw);
resIma=uint8(resIma);
imshow(resIma);

3、 对点运算结构图像的写入(如保存在桌面、扩展名为“.jpg”)

代码如下:

%Author: DreamBoy
%输入图像和显示图像
function []=write()
ima=imread('test.jpg'); %输入图像
imshow(ima); %显示图像
imwrite(ima,'output.jpg'); %保存图像到当前目录下,并命名为output
end
  • 1
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值