PixelShuffle方法

PixelShuffle是一种高效的上采样技术,用于图像超分辨率任务。它通过卷积和多通道重组,将低分辨率特征图转换为高分辨率特征图。在PyTorch、MXNet和TensorFlow等框架中均有实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文链接:https://blog.csdn.net/u014636245/article/details/98071626

PixelShuffle是一种上采样方法,可以对缩小后的特征图进行有效的放大。可以替代插值或解卷积的方法实现upscale

PixelShuffle

PixelShuffle(像素重组)的主要功能是将低分辨的特征图,通过卷积和多通道间的重组得到高分辨率的特征图。这一方法最初是为了解决图像超分辨率问题而提出的,这种称为Sub-Pixel Convolutional Neural Network的方法成为了上采样的有效手段。
在这里插入图片描述
要把一张低分辨输入转变为高分辨输出,论文ESPCN中提出用基于特征抽取和亚像素卷积的方法来扩大特征图,将特征图从低分辨空间转换到高分辨空间中去.上图中左侧第一部分是用于对图像的特征进行抽取。而后在倒数第二层生成 r 2 r 2 r 2 r2r2 r^2 r2r2r2wr,hr的上采样结果。具体来说,就是将原来一个低分辨的像素划分为rr各更小的格子,利用rr个特征图对应位置的值按照一定的规则来填充这些小格子。按照同样的规则将每个低分辨像素划分出的小格子填满就完成了重组过程。在这一过程中模型可以调整r*r个shuffle通道权重不断优化生成的结果。
主要实现了这样的功能:N*(C*r*r)*W*H---->>N*C*(H*r)*(W*r)

实现

在pytorch,mxnet和tensorflow都用相应的pixelshuffle实现。

pytorch 中主要使用nn.PixelShuffle函数:

    #官方文档的实例可以参考::

        >>> ps = nn.PixelShuffle(3)
        >>> input = autograd.Variable(torch.Tensor(1, 9, 4, 4))
        >>> output = ps(input)
        >>> print(output.size())
        torch.Size([1, 1, 12, 12])

在mxnet中gluon前端有针对不同的维度有三个apiPixelShuffle1D, PixelShuffle2D, PixelShuffle3D

#官方文档使用例子可以参考:
pxshuf = PixelShuffle1D(2)
x = mx.nd.zeros((1, 8, 3))
pxshuf(x).shape
#-----#
pxshuf = PixelShuffle2D((2, 3))
x = mx.nd.zeros((1, 12, 3, 5))
pxshuf(x).shape
#-----#
pxshuf = PixelShuffle3D((2, 3, 4))
x = mx.nd.zeros((1, 48, 3, 5, 7))
pxshuf(x).shape

tensorflow中也有人对pixelshuffle进行了实现:

#numpy
def PS(I, r):
  assert len(I.shape) == 3
  assert r>0
  r = int(r)
  O = np.zeros((I.shape[0]*r, I.shape[1]*r, I.shape[2]/(r*2)))
  for x in range(O.shape[0]):
    for y in range(O.shape[1]):
      for c in range(O.shape[2]):
        c += 1
        a = np.floor(x/r).astype("int")
        b = np.floor(y/r).astype("int")
        d = c*r*(y%r) + c*(x%r)
        print a, b, d
        O[x, y, c-1] = I[a, b, d]
  return O

#------#
#Tensorflow
def _phase_shift(I, r):
# Helper function with main phase shift operation
bsize, a, b, c = I.get_shape().as_list()
X = tf.reshape(I, (bsize, a, b, r, r))
X = tf.transpose(X, (0, 1, 2, 4, 3)) # bsize, a, b, 1, 1
X = tf.split(1, a, X) # a, [bsize, b, r, r]
X = tf.concat(2, [tf.squeeze(x) for x in X]) # bsize, b, ar, r
X = tf.split(1, b, X) # b, [bsize, ar, r]
X = tf.concat(2, [tf.squeeze(x) for x in X]) #
bsize, ar, br
return tf.reshape(X, (bsize, ar, br, 1))

def PS(X, r, color=False):
# Main OP that you can arbitrarily use in you tensorflow code
if color:
Xc = tf.split(3, 3, X)
X = tf.concat(3, [_phase_shift(x, r) for x in Xc])
else:
X = _phase_shift(X, r)
return X

### PixelShuffle 效应及其在图像超分辨率和神经网络中的应用 #### 基本概念 PixelShuffle 是一种用于上采样操作的技术,在图像超分辨率领域广泛应用。该技术能够有效地增加特征图的空间尺寸,同时减少通道数。具体来说,给定一个形状为 \(C \times H \times W\) 的输入张量,其中 \(C\) 表示通道数量,\(H\) 和 \(W\) 分别表示高度和宽度,则经过 PixelShuffle 后的新张量大小变为 \(\frac{C}{r^2} \times rH \times rW\) ,这里 \(r\) 就是放大比例因子。 #### 实现方式 实现这一变换的关键在于重新排列数据的方式。对于每一个局部的小矩阵(假设大小为 \(r \times r\)),这些元素会被打散并分配到更大的网格中相应的位置上去形成新的更大尺度上的单个像素值。下面是一个简单的 Python 代码片段展示了如何利用 PyTorch 库来进行这样的转换: ```python import torch.nn as nn class SubpixelConvolution(nn.Module): def __init__(self, channels, scale_factor=2): super(SubpixelConvolution, self).__init__() self.conv = nn.Conv2d(channels, channels * (scale_factor ** 2), kernel_size=3, padding=1) self.pixel_shuffle = nn.PixelShuffle(scale_factor) def forward(self, x): out = self.conv(x) out = self.pixel_shuffle(out) return out ``` 这段代码定义了一个子模块 `SubpixelConvolution`,它接受任意数量的输入通道,并通过卷积层将其扩展至原来的四倍(当缩放系数设为2时)。随后调用了内置函数 `nn.PixelShuffle()` 来完成实际的数据重排工作[^1]。 #### 对比传统方法的优势 相比于传统的插值方法如双线性插值或最近邻插值[^3],PixelShuffle 提供了一种更灵活且参数高效的解决方案。由于整个过程完全基于学习得到的滤波器权重来决定最终输出的结果,因此可以在不显著增加模型复杂度的情况下获得更好的性能表现。此外,因为所有操作都是可微分的,所以可以直接嵌入端到端训练框架内进行优化[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值