torchtext学习总结

原文链接:https://blog.csdn.net/leo_95/article/details/87708267

更新 2019/4/9
分享一个不错的torchtext入门github,地址在这

TorchText

在这里插入图片描述

API一览

torchtext.data

  • torchtext.data.Example : 用来表示一个样本,数据+标签
  • torchtext.vocab.Vocab: 词汇表相关
  • torchtext.data.Datasets: 数据集类,getitem 返回 Example实例
  • torchtext.data.Field : 用来定义字段的处理方法(文本字段,标签字段)
    • 创建 Example时的预处理
    • batch 时的一些处理操作。
  • torchtext.data.Iterator: 迭代器,用来生成 batch

torchtext.datasets: 包含了常见的数据集.

概述

torchtext对数据的处理可以概括为Field,Dataset和迭代器三部分。

Field对象

Field对象指定要如何处理某个字段

Dataset

Dataset定义数据源信息

Arguments:

  • examples: List of Examples.
  • fields (List(tuple(str, Field))): The Fields to use in this tuple. The string is a field name, and the Field is the associated field.
  • filter_pred (callable or None): Use only examples for which filter_pred(example) is True, or use all examples if None. Default is None.

迭代器(iterator)

迭代器返回模型所需要的处理后的数据。迭代器主要分为Iterator,BucketIterator,BPTTIterator三种。

  • Iterator:标准迭代器
  • BucketIterator:相比于标准迭代器,会将类似长度的样本当做一批来处理,因为在文本处理中经常会需要将每一批样本长度补齐为当前批中最长序列的长度,因此当样本长度差别较大时,使用BucketIerator可以带来填充效率的提高。除此之外,我们还可以在Field中通过fix_length参数来对样本进行截断补齐操作。
  • BPTTIterator:基于BPTT(基于时间的反向传播算法)的迭代器,一般用于语言模型中。

具体使用

使用Dataset类

  • 导入torchtext相关包
from torchtext import data
from torchtext.vocab import Vectors
from torch.nn import init
from tqdm import tqdm

 
 
  • 构建Field对象
tokenize = lambda x: x.split()
# fix_length指定每条文本的长度,截断补长
TEXT = data.Field(sequential=True, tokenize=tokenize, lower=True, fix_length=200)
LABEL = data.Field(sequential=False, use_vocab=False)

  
  

# get_dataset构造并返回Dataset所需的examples和fields
def get_dataset(csv_data, text_field, label_field, test=False):
fields = [(‘id’, None), (‘comment_text’, text_field), (‘toxic’, label_field)]
examples = []

# 得到构建Dataset所需的examples和fields
train_examples, train_fields = get_dataset(train_data, TEXT, LABEL)
valid_examples, valid_fields = get_dataset(valid_data, TEXT, LABEL)
test_examples, test_fields = get_dataset(test_data, TEXT, None, True)

# 构建Dataset数据集
train = data.Dataset(train_examples, train_fields)
valid = data.Dataset(valid_examples, valid_fields)
test = data.Dataset(test_examples, test_fields)

  • 自定义Dataset类

    当构建简单的数据集时,可直接使用torch.text.Dataset来构建,当对原始数据集只进行简单的划分处理时,例如读取数据并划分训练集验证集等操作,也可以直接使用TabularDataset类和split类方法来实现,该类支持读取csv,tsv等格式。但是当我们需要对数据进行更多的预处理时,例如shuffle,dropout等数据增强操作时,自定义Dataset会更灵活。

    • 核心代码:
    from torchtext import data
    from torchtext.vocab import Vectors
    from tqdm import tqdm
    import pandas as pd
    import numpy as np
    import torch
    import random
    import os
    

train_path = ‘data/train_one_label.csv’
valid_path = ‘data/valid_one_label.csv’
test_path = ‘data/test.csv’

class MyDataset(data.Dataset):
def init(self, path, text_field, label_field, test=False, aug=False, **kwargs):
fields = [(“id”, None), (“comment_text”, text_field), (“toxic”, label_field)]
examples = []
csv_data = pd.read_csv(path)
print(‘read data from {}’.format(path))

构建数据集

train = MyDataset(train_path, text_field=TEXT, label_field=LABEL, test=False, aug=1)
valid = MyDataset(valid_path, text_field=TEXT, label_field=LABEL, test=False, aug=1)
test = MyDataset(test_path, text_field=TEXT, label_field=LABEL, test=True, aug=1)

 
 
  • 构建词表

    所谓构建词表,即需要给每个单词编码,也就是用数字表示每个单词,这样才能传入模型。

    最简单的方法:build_vocab()方法中传入用于构建词表的数据集
    TEXT.build_vocab(train)
    

# 统计词频
TEXT.vocab.freqs.most_common(10)

  • 使用预训练词向量

    在使用pytorch或tensorflow等神经网络框架进行nlp任务的处理时,可以通过对应的Embedding层做词向量的处理,更多的时候,使用预训练好的词向量会带来更优的性能,下面介绍如何在torchtext中使用预训练的词向量,进而传送给神经网络模型进行训练。

    1. 使用torchtext默认支持的预训练词向量
    默认情况下,会自动下载对应的预训练词向量文件到当前文件夹下的.vector_cache目录下,.vector_cache为默认的词向量文件和缓存文件的目录。

    from torchtext.vocab import GloVe
    from torchtext import data
    TEXT = data.Field(sequential=True)
    

TEXT.build_vocab(train, vectors=GloVe(name=‘6B’, dim=300))
TEXT.build_vocab(train, vectors=“glove.6B.300d”)

  • 2. 使用外部预训练好的词向量
    上述使用预训练词向量文件的方式存在一大问题,即我们每做一个nlp任务时,建立词表时都需要在对应的.vector_cache文件夹中下载预训练词向量文件,如何解决这一问题?我们可以使用torchtext.vocab.Vectors中的name和cachae参数指定预训练的词向量文件和缓存文件的所在目录。因此我们也可以使用自己用word2vec等工具训练出的词向量文件,只需将词向量文件放在name指定的目录中即可。

    • 通过name参数可以指定预训练词向量文件所在的目录
      默认情况下预训练词向量文件和缓存文件的目录位置都为当前目录下的 .vector_cache目录,虽然通过name参数指定了预训练词向量文件存在的目录,但是因为缓存文件的目录没有特殊指定,此时在当前目录下仍然需要存在 .vector_cache 目录。
    if not os.path.exists('.vector_cache'):
        os.mkdir('.vector_cache')
    vectors = Vectors(name='myvector/glove/glove.6B.200d.txt')
    TEXT.build_vocab(train, vectors=vectors)
    
      
      
      • 通过cache参数指定缓存目录
      cache = '.vector_cache'
      if not os.path.exists(cache):
          os.mkdir(cache)
      vectors = Vectors(name='myvector/glove/glove.6B.200d.txt', cache=cache)
      # 指定Vector缺失值的初始化方式,没有命中的token的初始化方式
      vectors.unk_init = init.uniform_
      TEXT.build_vocab(train, vectors=vectors)
      
          
          
      • 构建迭代器

        在训练神经网络时,是对一个batch的数据进行操作,因此我们需要使用torchtext内部的迭代器对数据进行处理。

        from torchtext.data import Iterator, BucketIterator
        # 若只对训练集构造迭代器
        # train_iter = data.BucketIterator(dataset=train, batch_size=8, shuffle=True, sort_within_batch=False, repeat=False)
        

# 若同时对训练集和验证集进行迭代器构建
train_iter, val_iter = BucketIterator.splits(
(train, valid),
batch_size=(8, 8),
device=-1, # 如果使用gpu,将-1更换为GPU的编号
sort_key=lambda x: len(x.comment_text),
sort_within_batch=False,
repeat=False
)
test_iter = Iterator(test, batch_size=8, device=-1, sort=False, sort_within_batch=False, repeat=False)

  • BucketIterator相比Iterator的优势是会自动选取样本长度相似的数据来构建批数据。但是在测试集中一般不想改变样本顺序,因此测试集使用Iterator迭代器来构建。
    sort_within_batch参数设置为True时,按照sort_key按降序对每个小批次内的数据进行排序。如果我们需要padded序列使用pack_padded_sequence转换为PackedSequence对象时,这是非常重要的,我们知道如果想pack_padded_sequence方法必须将批样本按照降序排列。由此可见,torchtext不仅可以对文本数据进行很方便的处理,还可以很方便的和torchtext的很多内建方法进行结合使用。

    批数据的使用

    for idx, batch in enumerate(train_iter):
        text, label = batch.comment_text, batch.toxic
    
      
      
    • 在模型中指定Embedding层的权重

      在使用预训练好的词向量时,我们需要在神经网络模型的Embedding层中明确地传递嵌入矩阵的初始权重。权重包含在词汇表的vectors属性中。以Pytorch搭建的Embedding层为例:

      embedding = nn.Embedding(2000, 256)
      weight_matrix = TEXT.vocab.vectors
      embedding.weight.data.copy_(weight_matrix)
      
          
          
      • 使用torchtext构建的数据集用于LSTM

        import torch.nn as nn
        import torch.nn.functional as F
        import torch.optim as optim
        

weight_matrix = TEXT.vocab.vectors

class LSTM(nn.Module):
def init(self):
super(LSTM, self).init()
self.word_embeddings = nn.Embedding(len(TEXT.vocab), 300)
self.word_embeddings.weight.data.copy_(weight_matrix)
self.lstm = nn.LSTM(input_size=300, hidden_size=128, num_layer=1)
self.decoder = nn.Linear(128, 2)

def main():
model = LSTM()
model.train()
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=0.01)
loss_funciton = F.cross_entropy

一个使用torchtext内置数据集的例子

import torch
from torchtext import data
from torchtext import datasets
from torchtext.vocab import GloVe
import numpy as np

def load_data(opt):
print(‘loading {} dataset’.format(opt.dataset))
text = data.Field(lower=True, include_lengths=True, batch_first=True, fix_length=opt.max_seq_len)
label = data.Field(sequential=False)

train<span class="token punctuation">,</span> test <span class="token operator">=</span> datasets<span class="token punctuation">.</span>IMDB<span class="token punctuation">.</span>splits<span class="token punctuation">(</span>text<span class="token punctuation">,</span> label<span class="token punctuation">)</span>
text<span class="token punctuation">.</span>build_vocab<span class="token punctuation">(</span>train<span class="token punctuation">,</span> vectors<span class="token operator">=</span>GloVe<span class="token punctuation">(</span>name<span class="token operator">=</span><span class="token string">'6B'</span><span class="token punctuation">,</span> dim<span class="token operator">=</span><span class="token number">300</span><span class="token punctuation">)</span>
label<span class="token punctuation">.</span>build_vocab<span class="token punctuation">(</span>train<span class="token punctuation">)</span>

<span class="token keyword">print</span><span class="token punctuation">(</span><span class="token string">'len(TEXT.vocab)'</span><span class="token punctuation">,</span> <span class="token builtin">len</span><span class="token punctuation">(</span>text<span class="token punctuation">.</span>vocab<span class="token punctuation">)</span><span class="token punctuation">)</span>
<span class="token keyword">print</span><span class="token punctuation">(</span><span class="token string">'TEXT.vocab.vectors.size()'</span><span class="token punctuation">,</span> text<span class="token punctuation">.</span>vocab<span class="token punctuation">.</span>vectors<span class="token punctuation">.</span>size<span class="token punctuation">(</span><span class="token punctuation">)</span><span class="token punctuation">)</span>
  • 读取json文件并生成batch

    设置Field

    # 设置Field
    from torchtext import data
    question = data.Field(sequential=True, fix_length=20, pad_token='0')
    label = data.Field(sequential=False, use_vocab=False)
    
      
      
    • 1
    • 2
    • 3
    • 4
sequential=Truetokenizerfix_lengthpad_first=Truetensor_typelower
是否为sequences分词器文本长度是否从左补全Tensor type是否令英文字符为小写

sequential表明输入是否是序列文本,序列文本需要配合tokenize进行分词(默认使用splits)。如果需要处理中文文本,可以自定义tokenizer对中文进行切分。

import jieba

def chinese_tokenizer(text):
return [tok for tok in jieba.lcut(text)]

question = data.Field(sequential=True, tokenize=chinese_tokenizer, fix_length=20)

  • 使用torchtext.data.Tabulardataset.splits读取文件

    Tabulardataset:Defines a Dataset of columns stored in CSV, TSV, or JSON format.

    train, val, test = data.TabularDataset.splits(
                        path='./',
                        train='train.json',
                        validation='test.json',
                        test='test.json',
                        format='json',
                        # fields (list(tuple(str, Field)) or dict[str: tuple(str, Field)]
                        fields={'question': ('question': question), 'label': ('label': label)})
    
      
      
    • 构建vocab表

      cache = '.vector_cache'
      if not os.path.exists(cache):
          os.mkdir(cache)
      

vectors = Vectors(name=configs.embedding_path, cache=cache)
vectors.unk_init = init.xaiver_uniform_

  • 使用torchtext.data.Iterator.splits生成batch

    train_iter = data.Iterator(dataset=train, batch_size=256, shuffle=True, sort_within_batch=False, repeat=False, device=configs.device)
    val_iter = data.Iterator(dataset=val, batch_size=256, shuffle, sort=False, repeat=False, device=configs.device)
    test_iter = data.Iterator(dataset=test, batch_size=256, sort=False, repeat=False, device=configs.device)
    
      
      
    • dataset:加载的数据集
      batch_size:Batch的大小
      batch_size_fn:产生动态的batch_size的函数
      sort_key:排序的key
      train:是否是训练集
      repeat:是否在不同epoch中重复迭代
      shuffle:是否打乱数据
      sort:是否对数据进行排序
      sort_with_batch:batch内部是否排序

      做推理的例子

      模型训练完后, 需要对真实数据进行推理预测结果.
      以下是一个二分类的例子.

      def predict(model, sentence, min_len = 5):
          model.eval()
          tokenized = [tok.text for tok in nlp.tokenizer(sentence)]
          if len(tokenized) < min_len:
              tokenized += ['<pad>'] * (min_len - len(tokenized))
          indexed = [TEXT.vocab.stoi[t] for t in tokenized]
          tensor = torch.LongTensor(indexed).to(device)
          tensor = tensor.unsqueeze(1)
          prediction = torch.sigmoid(model(tensor))
          return prediction.item()
      
          
          

      参考链接

      torchtext使用
      torchtext官方文档
      A Tutorial on Torchtext
      pytorch学习笔记(十九):torchtext

  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: torchtext.data.field 是 torchtext 库中用来定义数据字段的类。它可以用来指定如何处理数据中的每一个字段,如将其转化为数字索引,进行分词等。可以用来定义文本字段,标签字段等。 ### 回答2: torchtext是一个基于PyTorch的NLP工具包,其中的data模块包含Field类,用于指定文本数据的预处理方式和形式。Field是一个非常重要的工具类,用于定义文本数据的结构、处理方法和对齐方式。 Field类主要用于指定文本数据中的字段,包括文本、标签、字符、词等。通过指定Field包括文本字段的文本内容、长度、词表、词向量等属性来构建数据集。通过使用Field可以实现对于不同文本字段的不同处理,如分词、统一标准,以便能够让模型更好的学习到数据的特征。 在使用torchtext的过程中,需要先定义Field,然后将数据源标准化为一致的格式。Field提供了一系列参数以控制数据的处理方式,比如指定分词器、是否强制逐字对齐、是否将数字转换成特定的标识符等等。在实际应用中,可以定义多个Field以处理多种文本类型的数据,然后将它们组合成Dataset数据集。 内置的Field类,它支持根据数据语言自动匹配处理方式,支持多种标准化方法和分词器。此外,它还支持多种数据类型和特殊字符的处理,如数字、字符、标签、分隔符等等。总之,Field类是torchtext中非常重要的一个类,通过它我们可以方便地处理文本数据,将数据标准化,使不同的数据格式统一化,有助于模型更好的学习数据特征,使NLP任务更加方便快捷。 ### 回答3: torchtext是一个用于处理文本数据的Python库,它提供了许多有用的工具,使得在自然语言处理任务中使用文本数据变得更加容易和高效。其中最常用的是torchtext.data.field模块,该模块定义了对于文本字段的预处理操作。 在使用torchtext.data.field时,需要确定文本数据处理的属性,例如:是文本还是标签,是否需要进行分词,是否需要将文本转化为小写等等。如下三个最常用的属性: 属性一:sequential。该属性指定该字段是否是一个序列,即一条数据是否由多个序列组成。例如,一篇文章可以被看作是一个由单词组成的序列,每个单词都是一个序列的元素。 属性二:use_vocab。该属性指定该字段是否需要建立词表。如果该属性为False,则不需要建立词表,例如一个标签字段,使用one-hot编码即可。如果该属性为True,则需要建立对应的词表,在使用该字段对数据进行预处理时,需要先将文本序列中的每一个单词映射为该词表中的唯一标识符ID。 属性三:tokenize。该属性指定在对该字段中的文本数据进行预处理时所采用的分词函数。分词函数会将文本数据分割成单词序列,这样才能将单词映射为词表中的唯一标识符ID。 在使用torchtext.data.field时,一般需要进行如下几步操作:首先,定义文本字段preprocessing规则,包括是否需要进行分词,分词函数,以及是否要建立词表。其次,对于原始的文本数据集,需要使用torchtext.data.TabularDataset类,采用相应的字段preprocessing规则进行预处理。最后,将预处理后的数据集分割为training set和test set,使用torchtext提供的Iterator类对数据进行批量读取,即可将数据输入到模型中。 总之,torchtext.data.field模块的使用可以极大简化自然语言处理中文本数据预处理工作,并且提供了丰富的属性,使得文本数据处理更具有灵活性和可维护性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值