源代码杀手
码龄4年
  • 602,073
    被访问
  • 403
    原创
  • 2,504
    排名
  • 22,582
    粉丝
关注
提问 私信

个人简介:算法工程师 互相学习,共同进步!

  • 加入CSDN时间: 2017-11-27
博客简介:

源代码杀手的博客

博客描述:
深度学习者、算法折腾者,AI科技与算法编程公众号:kangsinx
查看详细资料
  • 8
    领奖
    总分 5,747 当月 309
个人成就
  • 获得446次点赞
  • 内容获得253次评论
  • 获得2,166次收藏
创作历程
  • 82篇
    2022年
  • 179篇
    2021年
  • 220篇
    2020年
  • 2篇
    2019年
成就勋章
TA的专栏
  • 自然语言处理笔记
    付费
    13篇
  • 算法核心基础与AI模型设计
    付费
    28篇
  • 深度学习目标检测算法
    付费
    9篇
  • OpenCV图像处理基础
    付费
    6篇
  • 深度学习推荐系统算法
    付费
    1篇
  • python使用技巧
    26篇
  • 人工智能
    63篇
  • 安装
    1篇
  • TensorFlow
    40篇
  • Github
    1篇
  • 博客
    6篇
  • ubuntu
    69篇
  • NVIDIA-CUDA编程基础
    3篇
  • C/C++
    76篇
  • docker
    2篇
  • 报错记录
    13篇
  • Linux
    22篇
  • C++使用技巧
    21篇
  • C
    26篇
  • gcc
    25篇
  • VS code
    21篇
  • 互联网
    24篇
  • YOLO
    7篇
  • 深度学习实战项目学习
    4篇
  • 深度学习POSE项目学习
  • 人体姿态估计
  • 自动驾驶
    18篇
  • 无人驾驶
    22篇
  • 开发工具使用
    1篇
  • docker深度学习
    7篇
  • 可视化方法
    1篇
  • 笔记
  • 机器学习与AI模型
    1篇
  • End-to-End Speech-Recognitio
  • PyTorch
    1篇
  • matlab
    11篇
  • 人脸检测
    1篇
  • 深度学习性能分析
    2篇
  • 深度学习数据处理
    2篇
  • 数据集
    1篇
  • opencv
    1篇
  • Python
    54篇
  • carla
    3篇
  • 点云
    2篇
  • VMware
    1篇
  • latex
  • visual studio
    1篇
  • 微分方程
    1篇
  • hexo
    2篇
  • PyCharm
    8篇
兴趣领域 设置
  • 人工智能
    语音识别计算机视觉目标检测机器学习深度学习自然语言处理tensorflowpytorch语言模型智慧城市图像处理
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

NLP模型笔记2022-06:pyhanlp加载训练完的语言模型路径进行预测

需要调用的api接口为:from pyhanlp import *HanLP = JClass('com.hankcs.hanlp.HanLP')CRFSegmenter = JClass('com.hankcs.hanlp.model.crf.CRFSegmenter')CRFLexicalAnalyzer = JClass('com.hankcs.hanlp.model.crf.CRFLexicalAnalyzer')CRFPOSTagger = JClass('com.hankcs.han
原创
发布博客 2022.05.20 ·
133 阅读 ·
1 点赞 ·
1 评论

python使用技巧(二十八):判断并计算列表不同数据类型的基数

list_demo = [1, 1, 3, 4, 1, 1,'FGVRH', '56', 'C', 'RR', 'SS', 'EE',"F53"] # 计算标注数据的类型基数heads_num=0# deps_num=0for i in list_demo: if str(type(i))==str(type("")): heads_num=heads_num+1 # print(i) # if str(type(i))==str(type
原创
发布博客 2022.05.19 ·
65 阅读 ·
0 点赞 ·
0 评论

【博士论文】使用压缩表示的 中文分词词性标注研究

【博士论文】使用压缩表示的 中文分词词性标注研究:http://www.cips-cl.org/static/anthology/CCL-2013/CCL-13-044.pdf
转载
发布博客 2022.05.13 ·
47 阅读 ·
0 点赞 ·
0 评论

学习资料ctb8.0(Chinese Treebank 8.0)数据集

发布资源 2022.05.10 ·
zip

NLP模型笔记2022-05:实体识别与句法分析实战

spacy进行命名中文实体识别:如果不满足你的需求,可以重新训练。参考这批文章:https://zhuanlan.zhihu.com/p/361351525https://ner.pythonhumanities.com/03_02_train_spacy_ner_model.htmlimport spacy nlp2 = spacy.load('zh_core_web_sm') #加载中文包def read_file(file_name): #打开要处理.
原创
发布博客 2022.05.07 ·
175 阅读 ·
0 点赞 ·
0 评论

NLP模型笔记2022-04:一个简单案例理解语言模型预测句子的原理

所谓语言模型,就是利用数学的方法描述语言规律。而统计语言模型,就是用句子S出现的概率P(S)来刻画句子的合理性(而不进行语言学分析处理),这是统计自然语言处理的基础模型。本次使用马尔科夫模型进行理解:假设句子S=w1,w2,…,wn,其中,wi可以暂时看作句子中的第i个词(在后面会进行具体介绍)。由于自然语言是上下文相关的信息传递方式,可以很自然地讲句子S出现的概率定义如下:P(S) = P(w1)P(w2|w1)...P(wn|w1,w2,...wn-1)特别地,当i=1时,P(w1|w0) .
原创
发布博客 2022.05.07 ·
85 阅读 ·
0 点赞 ·
0 评论

NLP模型笔记2022-03:简单理解nlp句法分析

句法分析(syntactic parsing)是自然语言处理中的关键技术之一,它是对输入的文本句子进行分析以得到句子的句法结构的处理过程。对句法结构进行分析,一方面是语言理解的自身需求,句法分析是语言理解的重要一环,另一方面也为其它自然语言处理任务提供支持。例如句法驱动的统计机器翻译需要对源语言或目标语言(或者同时两种语言)进行句法分析;语义分析通常以句法分析的输出结果作为输入以便获得更多的指示信息。根据句法结构的表示形式不同,最常见的句法分析任务可以分为以下三种:句法结构分析(syntactic
原创
发布博客 2022.05.07 ·
58 阅读 ·
0 点赞 ·
0 评论

NLP模型笔记2022-02:关于规则与语料对语言模型的理解

自然语言处理大概可以分为两个学派:理性主义学派和经验主义学派。理性主义学派认为语言是由一些表层或深层的规律构成的,所以试图利用规则描述语言规律;而经验主义学派认为,人们的语言能力是学习得到的,所以试图利用大量的语料对语言规律进行学习,很显然,两个学派都有其长处和短板。利用规则描述语言规律直观、灵活,还可以表述复杂的语言知识,具有良好的描述能力和生成能力,但是这种方法对语言知识的覆盖率低,成本高,对语言冲突缺乏解决能力,而且自然语言处于不断的变化之中,而规则法对这种变化的适应能力很弱。利用语料对语言进.
原创
发布博客 2022.05.07 ·
13 阅读 ·
0 点赞 ·
0 评论

NLP模型笔记2022-01:浅谈语言模型

目录1、语言模型与条件概率1-1、条件概率1-2、语言模型1-3、Markov假设与HMM模型1-4、平滑处理[解决句子0概率稀疏问题]2、HMM源码实现参考文献1、语言模型与条件概率1-1、条件概率条件概率是指事件A在事件B发生的条件下发生的概率。条件概率表示为:P(A|B),读作“A在B发生的条件下发生的概率”。若只有两个事件A,B,那么,条件概率的链式法则,也称为条件概率的乘法法则:P(a,b,c)=P(a|b,c) P(b,c) = P(a|b,c) P(b|c) P(c)条件概率的
原创
发布博客 2022.05.05 ·
85 阅读 ·
0 点赞 ·
0 评论

重要的 NLP 任务总结与20本最佳深度学习书籍[附带源码]

目录分类信息检索和文档排序文本到文本生成知识库、实体和关系主题和关键词聊天机器人文本推理假新闻和言论检测文本预处理参考分类文本分类:为句子或文档分配类别(例如垃圾邮件过滤)。情感分析:识别一段文本的极性。信息检索和文档排序句子/文档相似度:确定两个文本的相似程度。问答:用自然语言回答问题的任务。文本到文本生成机器翻译:从一种语言翻译成另一种语言。文本生成:创建与人类书写的文本无法区分的文本。文本摘要:创建几个文档的缩短版本,以保留其大部分含义。文本简化:使文本更易于阅读和理.
原创
发布博客 2022.04.30 ·
736 阅读 ·
0 点赞 ·
0 评论

优质的深度学习NLP学习资料[(第四部分【AI聊天机器人学习资源】)

目录聊天机器人应用程序和用例文章和教程调查流行的库和产品视频教程聊天机器人是一种程序,用于通过文本或文本转语音进行聊天对话,代替与现场人工代理的直接联系。聊天机器人应用程序和用例自动化 B2C 客户服务。自动化 B2C 销售和营销。处理内部帮助台支持,并自动执行某些任务,例如面试安排、员工推荐和候选人筛选(HR 聊天机器人)。更有效地解锁和分享组织中的知识和经验。收集客户反馈。提供产品推荐。文章和教程聊天机器人初学者完整指南:什么是聊天机器人?为什么他们有这么大的机会?它们是如何.
原创
发布博客 2022.04.30 ·
721 阅读 ·
0 点赞 ·
0 评论

优质的深度学习NLP学习资料[(第三部分【问答学习资源】)

目录问答应用程序和用例文章和教程调查热门图书馆视频教程问答(QA) 模型能够从给定文本中检索问题的答案。这对于在文档中搜索答案很有用。根据使用的模型,可以直接从文本中提取答案或从头开始生成答案。问答应用程序和用例使用知识库(例如文档)自动响应常见问题。用于客户支持或企业常见问题解答机器人的智能助手。增强搜索引擎结果。自动测验生成,以及自动问题生成。文章和教程什么是问答?:问答任务变体和使用来自转换器库的预训练模型进行推理。问答课程:使用变压器库微调问答模型的分步指南。两分钟 NL.
原创
发布博客 2022.04.30 ·
388 阅读 ·
0 点赞 ·
0 评论

优质的深度学习NLP学习资料[(第二部分【语言模型学习资源】)

目录语言模型语言模型应用程序和用例文章和教程调查热门图书馆语言模型NLP 中的语言模型是一种概率统计模型,它根据前面的单词确定给定单词序列的概率。语言模型有助于预测哪个单词更有可能出现在句子中。语言模型应用程序和用例预测文本输入系统(例如自动完成、文本建议)。语音识别。机器翻译。拼写更正。自然语言生成 (NLG)。文字总结。文章和教程语言模型的演变:N-Grams, Word Embeddings, Attention & Transformers:关于多年来自然语言处.
原创
发布博客 2022.04.30 ·
371 阅读 ·
0 点赞 ·
0 评论

优质的深度学习NLP学习资料[(第一部分:斯坦福-2022 年课程)

Graphic Thesaurus for "TXT file" provided by FreeThesaurus.com
原创
发布博客 2022.04.30 ·
869 阅读 ·
0 点赞 ·
0 评论

TensorFlow Lite 示例应用

参考连接:https://www.tensorflow.org/lite/examples
转载
发布博客 2022.04.25 ·
54 阅读 ·
0 点赞 ·
0 评论

已破2w,继续分享技术,为社区做贡献,学习使我快乐! 喜欢AI算法欢迎关注我。

发布动态 2022.04.24

AI模型设计:Ubuntu18.04完美编译在阿里云镜像源tensorflow C++并实现深度学习计算【编译方法与测试深度学习C++源码已开源】

目录0、编译环境参数要求1、bazel编译教程方法2、获取编译好的tensorflow c++动态库进行调用开发3、tensorflow c++开源demo实现源码过程目录训练源码CMakeList.txt填入编译成功的TF动态库与头文件路径开始编译并输出C++训练结果编译好的环境已免费开源0、编译环境参数要求ubuntu18.01bazel 0.26.1miniconda3+python3.6gcc 7.5.0glibc 2.27cmake-3.19.4icu/release-62-1
原创
发布博客 2022.04.23 ·
1826 阅读 ·
0 点赞 ·
0 评论

NVIDIA-CUDA-CUDNN-TENSORRT深度学习编程学习文档

官网文档中心:https://docs.nvidia.com/
转载
发布博客 2022.04.17 ·
56 阅读 ·
0 点赞 ·
0 评论

AI模型设计:C++版本tensorflow_gpu模型构建与训练

未完待续,周末更新三篇文章:#include <tensorflow/tensorflow/cc/client/client_session.h>#include <tensorflow/tensorflow/cc/ops/standard_ops.h>#include <tensorflow/tensorflow/core/framework/tensor.h>#include <tensorflow/tensorflow/cc/framework/gra
原创
发布博客 2022.04.13 ·
1208 阅读 ·
0 点赞 ·
0 评论

安装Hyper-V、WSL与虚拟机调用NVIDIA-GPU进行深入学习计算

参考连接:https://github.com/KangChou/WSL-CUDA
转载
发布博客 2022.04.11 ·
111 阅读 ·
0 点赞 ·
0 评论
加载更多