三层BP神经网络的python实现

这是一个非常漂亮的三层反向传播神经网络的python实现,下一步我准备试着将其修改为多层BP神经网络。

 

下面是运行演示函数的截图,你会发现预测的结果很惊人!

 

 

提示:运行演示函数的时候,可以尝试改变隐藏层的节点数,看节点数增加了,预测的精度会否提升

import math
import random
import string

random.seed(0)

# 生成区间[a, b)内的随机数
def rand(a, b):
    return (b-a)*random.random() + a

# 生成大小 I*J 的矩阵,默认零矩阵 (当然,亦可用 NumPy 提速)
def makeMatrix(I, J, fill=0.0):
    m = []
    for i in range(I):
        m.append([fill]*J)
    return m

# 函数 sigmoid,这里采用 tanh,因为看起来要比标准的 1/(1+e^-x) 漂亮些
def sigmoid(x):
    return math.tanh(x)

# 函数 sigmoid 的派生函数, 为了得到输出 (即:y)
def dsigmoid(y):
    return 1.0 - y**2

class NN:
    ''' 三层反向传播神经网络 '''
    def __init__(self, ni, nh, no):
        # 输入层、隐藏层、输出层的节点(数)
        self.ni = ni + 1 # 增加一个偏差节点
        self.nh = nh
        self.no = no

        # 激活神经网络的所有节点(向量)
        self.ai = [1.0]*self.ni
        self.ah = [1.0]*self.nh
        self.ao = [1.0]*self.no
        
        # 建立权重(矩阵)
        self.wi = makeMatrix(self.ni, self.nh)
        self.wo = makeMatrix(self.nh, self.no)
        # 设为随机值
        for i in range(self.ni):
            for j in range(self.nh):
                self.wi[i][j] = rand(-0.2, 0.2)
        for j in range(self.nh):
            for k in range(self.no):
                self.wo[j][k] = rand(-2.0, 2.0)

        # 最后建立动量因子(矩阵)
        self.ci = makeMatrix(self.ni, self.nh)
        self.co = makeMatrix(self.nh, self.no)

    def update(self, inputs):
        if len(inputs) != self.ni-1:
            raise ValueError('与输入层节点数不符!')

        # 激活输入层
        for i in range(self.ni-1):
            #self.ai[i] = sigmoid(inputs[i])
            self.ai[i] = inputs[i]

        # 激活隐藏层
        for j in range(self.nh):
            sum = 0.0
            for i in range(self.ni):
                sum = sum + self.ai[i] * self.wi[i][j]
            self.ah[j] = sigmoid(sum)

        # 激活输出层
        for k in range(self.no):
            sum = 0.0
            for j in range(self.nh):
                sum = sum + self.ah[j] * self.wo[j][k]
            self.ao[k] = sigmoid(sum)

        return self.ao[:]

    def backPropagate(self, targets, N, M):
        ''' 反向传播 '''
        if len(targets) != self.no:
            raise ValueError('与输出层节点数不符!')

        # 计算输出层的误差
        output_deltas = [0.0] * self.no
        for k in range(self.no):
            error = targets[k]-self.ao[k]
            output_deltas[k] = dsigmoid(self.ao[k]) * error

        # 计算隐藏层的误差
        hidden_deltas = [0.0] * self.nh
        for j in range(self.nh):
            error = 0.0
            for k in range(self.no):
                error = error + output_deltas[k]*self.wo[j][k]
            hidden_deltas[j] = dsigmoid(self.ah[j]) * error

        # 更新输出层权重
        for j in range(self.nh):
            for k in range(self.no):
                change = output_deltas[k]*self.ah[j]
                self.wo[j][k] = self.wo[j][k] + N*change + M*self.co[j][k]
                self.co[j][k] = change
                #print(N*change, M*self.co[j][k])

        # 更新输入层权重
        for i in range(self.ni):
            for j in range(self.nh):
                change = hidden_deltas[j]*self.ai[i]
                self.wi[i][j] = self.wi[i][j] + N*change + M*self.ci[i][j]
                self.ci[i][j] = change

        # 计算误差
        error = 0.0
        for k in range(len(targets)):
            error = error + 0.5*(targets[k]-self.ao[k])**2
        return error

    def test(self, patterns):
        for p in patterns:
            print(p[0], '->', self.update(p[0]))

    def weights(self):
        print('输入层权重:')
        for i in range(self.ni):
            print(self.wi[i])
        print()
        print('输出层权重:')
        for j in range(self.nh):
            print(self.wo[j])

    def train(self, patterns, iterations=1000, N=0.5, M=0.1):
        # N: 学习速率(learning rate)
        # M: 动量因子(momentum factor)
        for i in range(iterations):
            error = 0.0
            for p in patterns:
                inputs = p[0]
                targets = p[1]
                self.update(inputs)
                error = error + self.backPropagate(targets, N, M)
            if i % 100 == 0:
                print('误差 %-.5f' % error)


def demo():
    # 一个演示:教神经网络学习逻辑异或(XOR)------------可以换成你自己的数据试试
    pat = [
        [[0,0], [0]],
        [[0,1], [1]],
        [[1,0], [1]],
        [[1,1], [0]]
    ]

    # 创建一个神经网络:输入层有两个节点、隐藏层有两个节点、输出层有一个节点
    n = NN(2, 2, 1)
    # 用一些模式训练它
    n.train(pat)
    # 测试训练的成果(不要吃惊哦)
    n.test(pat)
    # 看看训练好的权重(当然可以考虑把训练好的权重持久化)
    #n.weights()
    
    
if __name__ == '__main__':
    demo()

运行结果:

D:\python\python3.6\python.exe D:/AI/paper/三层BP神经网络的python实现.py
误差 0.94250
误差 0.04287
误差 0.00348
误差 0.00164
误差 0.00106
误差 0.00078
误差 0.00092
误差 0.00053
误差 0.00044
误差 0.00038
[0, 0] -> [0.03036939032113823]
[0, 1] -> [0.9817636240847771]
[1, 0] -> [0.9816259907635363]
[1, 1] -> [-0.025585374843295334]
 

  • 8
    点赞
  • 87
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
三层BP神经网络是一种基本的前馈神经网络,它包含输入层、隐层和输出层三个部分。该神经网络可以用于分类和回归等问题。 在Python中,可以使用各种框架(如TensorFlow、Keras、PyTorch)来实现三层BP神经网络。以TensorFlow为例,可以使用以下步骤实现: 1. 导入所需的库和数据 ``` import tensorflow as tf import numpy as np # 导入训练数据和测试数据 train_data = np.loadtxt('train_data.txt') train_label = np.loadtxt('train_label.txt') test_data = np.loadtxt('test_data.txt') test_label = np.loadtxt('test_label.txt') ``` 2. 构建神经网络模型 ``` # 定义输入层、隐层和输出层的节点数 input_size = 10 hidden_size = 20 output_size = 2 # 定义占位符 x = tf.placeholder(tf.float32, [None, input_size]) y = tf.placeholder(tf.float32, [None, output_size]) # 定义权重和偏置 w1 = tf.Variable(tf.truncated_normal([input_size, hidden_size], stddev=0.1)) b1 = tf.Variable(tf.zeros([hidden_size])) w2 = tf.Variable(tf.truncated_normal([hidden_size, output_size], stddev=0.1)) b2 = tf.Variable(tf.zeros([output_size])) # 定义隐层和输出层的计算方式 hidden_output = tf.nn.relu(tf.matmul(x, w1) + b1) final_output = tf.matmul(hidden_output, w2) + b2 ``` 3. 定义损失函数和优化器 ``` # 定义交叉熵损失函数 cross_entropy = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits_v2(logits=final_output, labels=y)) # 定义Adam优化器 train_step = tf.train.AdamOptimizer(learning_rate=0.001).minimize(cross_entropy) ``` 4. 训练模型并测试 ``` # 定义Session并初始化变量 sess = tf.Session() sess.run(tf.global_variables_initializer()) # 训练模型 for i in range(1000): sess.run(train_step, feed_dict={x: train_data, y: train_label}) # 测试模型 correct_prediction = tf.equal(tf.argmax(final_output, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print(sess.run(accuracy, feed_dict={x: test_data, y: test_label})) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值